
Athena Widget Set - C Language Interface

X Consortium Standard

Chris D. Peterson, formerly MIT X Consortium

Athena Widget Set - C Language Interface: X Consortium Standard
by Chris D. Peterson

libXaw Version 1.0.14
Copyright © 1985, 1986, 1987, 1988, 1989, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The OpenGroup.

Copyright © 1985, 1986, 1987, 1988, 1989, 1991 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein for any purpose. It is provided “as is” without express or implied
warranty.

Table of Contents
1. Athena Widgets and The Intrinsics ... 1

Introduction to the X Toolkit .. 1
Terminology .. 2
Underlying Model ... 3
Conventions Used in this Manual .. 3
Format of the Widget Reference Chapters ... 4
Input Focus .. 5

2. Using Widgets .. 6
Using Widgets .. 6

Setting the Locale ... 6
Initializing the Toolkit ... 6
Creating a Widget ... 7
Common Resources ... 8
Resource Conversions .. 9
Realizing a Widget .. 10
Processing Events ... 10
Standard Widget Manipulation Functions .. 10
Using the Client Callback Interface .. 12
Programming Considerations ... 13
Example Programs .. 18

3. Simple Widgets ... 19
Command Widget ... 19

Resources .. 20
Command Actions ... 21

Grip Widget ... 22
Resources .. 22
Grip Actions .. 23

Label Widget .. 24
Resources .. 25

List Widget .. 26
Resources .. 26
List Actions ... 28
List Callbacks ... 29
Changing the List .. 29
Highlighting an Item .. 30
Unhighlighting an Item .. 30
Retrieving the Currently Selected Item .. 30
Restrictions .. 30

Panner Widget .. 31
Resources .. 31
Panner Actions ... 33
Panner Callbacks ... 34

Repeater Widget ... 34
Resources .. 35
Repeater Actions ... 37

Scrollbar Widget ... 37
Resources .. 38
Scrollbar Actions .. 40
Scrollbar Callbacks .. 41
Convenience Routines .. 41
Setting Float Resources .. 42

iii

Athena Widget Set -
C Language Interface

Simple Widget .. 42
Resources .. 43

StripChart Widget ... 43
Resources .. 44
Getting the StripChart Value ... 45

Toggle Widget .. 45
Resources .. 46
Toggle Actions ... 48
Toggle Actions ... 48
Radio Groups ... 49
Convenience Routines .. 49

4. Menus ... 51
Using the Menus ... 51
SimpleMenu Widget .. 51

Resources .. 52
SimpleMenu Actions ... 54
Positioning the SimpleMenu ... 55
Convenience Routines .. 55

SmeBSB Object .. 56
Resources .. 56

SmeLine Object .. 58
Resources .. 58

Sme Object .. 59
Resources .. 59
Subclassing the Sme Object .. 59

MenuButton Widget .. 60
Resources .. 60
MenuButton Actions .. 62
MenuButton Actions .. 62

5. Text Widgets .. 64
Text Widget for Users ... 64

Default Key Bindings .. 64
Search and Replace ... 65
File Insertion .. 67
Text Selections for Users ... 67

Text Widget Actions .. 68
Cursor Movement Actions .. 68
Delete Actions .. 69
Selection Actions .. 70
The New Line Actions ... 70
Kill and Actions ... 71
Miscellaneous Actions ... 71
Text Selections for Application Programmers ... 73

Default Translation Bindings ... 74
Text Functions .. 75

Selecting Text .. 76
Unhighlighting Text ... 76
Getting Current Text Selection .. 76
Replacing Text ... 76
Searching for Text .. 77
Redisplaying Text ... 77
Resources Convenience Routines ... 78

Ascii Text Widget ... 79
Resources .. 80

iv

Athena Widget Set -
C Language Interface

Ascii Source Object and Multi Source Object .. 81
Resources .. 82
Convenience Routines .. 83

Ascii Sink Object and Multi Sink Object .. 84
Resources .. 84

Customizing the Text Widget .. 85
Text Widget ... 86

Resources .. 86
TextSrc Object .. 87

Resources .. 87
Subclassing the TextSrc ... 88

TextSink Object .. 90
Resources .. 91
Subclassing the TextSink .. 91

6. Composite and Constraint Widgets ... 96
Box Widget .. 96

Resources .. 97
Layout Semantics .. 98

Dialog Widget .. 98
Resources .. 99
Constraint Resources .. 100
Layout Semantics .. 101
Automatically Created Children. .. 102
Convenience Routines .. 102

Form Widget .. 103
Resources ... 103
Constraint Resources .. 104
Layout Semantics .. 105
Convenience Routines .. 106

Paned Widget ... 106
Using the Paned Widget ... 107
Resources ... 107
Constraint Resources .. 109
Layout Semantics .. 110
Grip Translations ... 111
Convenience Routines .. 112

Porthole Widget .. 113
Resources ... 113
Layout Semantics .. 114
Porthole Callbacks ... 114

Tree Widget ... 115
Resources ... 115
Constraint Resources .. 116
Layout Semantics .. 116
Convenience Routines .. 117

Viewport Widget ... 117
Resources ... 117
Layout Semantics .. 119

7. Creating New Widgets (Subclassing) ... 120
Public Header File ... 121
Private Header File .. 123
Widget Source File .. 124

8. Acknowledgments .. 128
Index ... 130

v

Chapter 1. Athena Widgets and The
Intrinsics

The X Toolkit is made up of two distinct pieces, the Xt Intrinsics and a widget set. The Athena widget
set is a sample implementation of a widget set built upon the Intrinsics. In the X Toolkit, a widget is the
combination of an X window or subwindow and its associated input and output semantics.

Because the Intrinsics provide the same basic functionality to all widget sets it may be possible to use
widgets from the Athena widget set with other widget sets based upon the Intrinsics. Since widget sets
may also implement private protocols, all functionality may not be available when mixing and matching
widget sets. For information about the Intrinsics, see the X Toolkit Intrinsics - C Language Interface.

The Athena widget set is a library package layered on top of the Intrinsics and Xlib that provides a set
of user interface tools sufficient to build a wide variety of applications. This layer extends the basic
abstractions provided by X and provides the next layer of functionality primarily by supplying a cohesive
set of sample widgets. Although the Intrinsics are a Consortium standard, there is no standard widget set.

To the extent possible, the Intrinsics are "policy-free". The application environment and widget set, not
the Intrinsics, define, implement, and enforce:

• Policy

• Consistency

• Style

Each individual widget implementation defines its own policy. The X Toolkit design allows for, but does
not necessarily encourage, the free mixing of radically differing widget implementations.

Introduction to the X Toolkit
 The X Toolkit provides tools that simplify the design of application user interfaces in the X Window
System programming environment. It assists application programmers by providing a set of common
underlying user-interface functions. It also lets widget programmers modify existing widgets, by
subclassing, or add new widgets. By using the X Toolkit in their applications, programmers can present a
similar user interface across applications to all workstation users.

The X Toolkit consists of:

• A set of Intrinsics functions for building widgets

• An architectural model for constructing widgets

• A widget set for application programming

While the majority of the Intrinsics functions are intended for the widget programmer, a subset of the
Intrinsics functions are to be used by application programmers (see X Toolkit Intrinsics - C Language
Interface). The architectural model lets the widget programmer design new widgets by using the Intrinsics
and by combining other widgets. The application interface layers built on top of the X Toolkit include a
coordinated set of widgets and composition policies. Some of these widgets and policies are specific to a
single application domain, and others are common to a variety of applications.

1

Athena Widgets and The Intrinsics

The remainder of this chapter discusses the X Toolkit and Athena widget set:

• Terminology

• Model

• Conventions used in this manual

• Format of the Widget Reference Chapters

Terminology
In addition to the terms already defined for X programming (see Xlib - C Language Interface), the
following terms are specific to the Intrinsics and Athena widget set and used throughout this document.

Application programmer A programmer who uses the X Toolkit to produce an application user
interface.

Child A widget that is contained within another "parent" widget.

Class The general group to which a specific object belongs.

Client A function that uses a widget in an application or for composing other
widgets.

FullName The name of a widget instance appended to the full name of its parent.

Instance A specific widget object as opposed to a general widget class.

Method A function or procedure implemented by a widget class.

Name The name that is specific to an instance of a widget for a given client.
This name is specified at creation time and cannot be modified.

Object A data abstraction consisting of private data and private and public
functions that operate on the private data. Users of the abstraction
can interact with the object only through calls to the object's public
functions. In the X Toolkit, some of the object's public functions are
called directly by the application, while others are called indirectly
when the application calls the common Intrinsics functions. In
general, if a function is common to all widgets, an application uses
a single Intrinsics function to invoke the function for all types of
widgets. If a function is unique to a single widget type, the widget
exports the function.

Parent A widget that contains at least one other ("child") widget. A parent
widget is also known as a composite widget.

Resource A named piece of data in a widget that can be set by a client, by an
application, or by user defaults.

Superclass A larger class of which a specific class is a member. All members of
a class are also members of the superclass.

User A person interacting with a workstation.

2

Athena Widgets and The Intrinsics

Widget An object providing a user-interface abstraction (for example, a
Scrollbar widget).

Widget class The general group to which a specific widget belongs, otherwise
known as the type of the widget.

Widget programmer A programmer who adds new widgets to the X Toolkit.

Underlying Model
 The underlying architectural model is based on the following premises:

Widgets are X windows

Every user-interface widget is associated with an X window. The X window ID for a widget is readily
available from the widget. Standard Xlib calls can be used by widgets for many of their input and
output operations.

Information hiding

The data for every widget is private to the widget and its subclasses. That is, the data is neither directly
accessible nor visible outside of the module implementing the widget. All program interaction with
the widget is performed by a set of operations (methods) that are defined for the widget.

Widget semantics and widget layout geometry

Widget semantics are clearly separated from widget layout geometry. Widgets are concerned with
implementing specific user-interface semantics. They have little control over issues such as their
size or placement relative to other widget peers. Mechanisms are provided for associating geometric
managers with widgets and for widgets to make suggestions about their own geometry.

Conventions Used in this Manual
• All resources available to the widgets are listed with each widget. Many of these are available to more

than one widget class due to the object oriented nature of the Intrinsics. The new resources for each
widget are listed in bold text, and the inherited resources are listed in plain text.

• Global symbols are printed in bold and can be function names, symbols defined in include files, or
structure names. Arguments are printed in italics.

• Each function is introduced by a general discussion that distinguishes it from other functions. The
function declaration itself follows, and each argument is specifically explained. General discussion of
the function, if any is required, follows the arguments. Where applicable, the last paragraph of the
explanation lists the return values of the function.

• To eliminate any ambiguity between those arguments that you pass and those that a function returns
to you, the explanations for all arguments that you pass start with the word specifies or, in the case of
multiple arguments, the word specify. The explanations for all arguments that are returned to you start
with the word returns or, in the case of multiple arguments, the word return. The explanations for all
arguments that you can pass and are returned start with the words specifies and returns.

• Any pointer to a structure that is used to return a value is designated as such by the _return suffix as
part of its name. All other pointers passed to these functions are used for reading only. A few arguments
use pointers to structures that are used for both input and output and are indicated by using the _in_out
suffix.

3

Athena Widgets and The Intrinsics

Format of the Widget Reference Chapters
 The majority of this document is a reference guide for the Athena widget set. Chapters three through six
give the programmer all information necessary to use the widgets. The layout of the chapters follows a
specific pattern to allow the programmer to easily find the desired information.

The first few pages of every chapter give an overview of the widgets in that section. Widgets are grouped
into chapters by functionality.

• Chapter 3, Simple Widgets

• Chapter 4, Menus

• Chapter 5, Text Widgets

• Chapter 6, Composite and Constraint Widgets

Following the introduction will be a description of each widget in that chapter. When no functional
grouping is obvious the widgets are listed in alphabetical order, such as in chapters three and six.

The first section of each widget's description is a table that contains general information about this widget
class. Here is the table for the Box widget, and an explanation of all the entries.

Application Header file <X11/Xaw/Box.h>
Class Header file <X11/Xaw/BoxP.h>
Class boxWidgetClass
Class Name Box
Superclass Composite

Application Header File This file must be included when an application uses this widget.
It usually contains the class definition, and some resource macros.
This is often called the “public” header file.

Class Header File This file will only be used by widget programmers. It will need to
be included by any widget that subclasses this widget. This is often
called the “private” header file.

Class This is the widget class of this widget. This global symbol is passed
to XtCreateWidget so that the Intrinsics will know which type
of widget to create.

Class Name This is the resource name of this class. This name can be used in a
resource file to match any widget of this class.

Superclass This is the superclass that this widget class is descended from.
If you understand how the superclass works it will allow you to
more quickly understand what this widget does, since much of its
functionality may be inherited from its superclass.

After this table follows a general description of the default behavior of this widget, as seen by the user. In
many cases this functionality may be overridden by the application programmer, or by the user.

4

Athena Widgets and The Intrinsics

The next section is a table showing the name, class, type and default value of each resource that is
available to this widget. There is also a column containing notes describing special restrictions placed
upon individual resources.

A This resource may be automatically adjusted when another resource is changed.

C This resource is only settable at widget creation time, and may not be modified with
XtSetValues.

D Do not modify this resource. While setting this resource will work, it can cause
unexpected behavior. When this symbol appears there is another, preferred, interface
provided by the X Toolkit.

R This resource is READ-ONLY, and may not be modified.

After the resource table is a detailed description of every resource available to that widget. Many of these
are redundant, but printing them with each widget saves page flipping. The names of the resources that are
inherited are printed in plain text, while the names of the resources that are new to this class are printed
in bold. If you have already read the description of the superclass you need only pay attention to the
resources printed in bold.

For each composite widget there is a section on layout semantics that follows the resource description. This
section will describe the effect of constraint resources on the layout of the children, as well as a general
description of where it prefers to place its children.

Descriptions of default translations and action routines come next, for widgets to which they apply. The last
item in each widget's documentation is the description of all convenience routines provided by the widget.

Input Focus
The Intrinsics define a resource on all Shell widgets that interact with the window manager called input.
This resource requests the assistance of window manager in acquiring the input focus. The resource
defaults to False in the Intrinsics, but is redefined to default to True when an application is using the
Athena widget set. An application programmer may override this default and set the resource back to
False if the application does not need the window manager to give it the input focus. See the X Toolkit
Intrinsics - C Language Interface for details on the input resource.

5

Chapter 2. Using Widgets
Using Widgets

Widgets serve as the primary tools for building a user interface or application environment. The Athena
widget set consists of primitive widgets that contain no children (for example, a command button) and
composite widgets which may contain one or more widget children (for example, a Box widget).

The remaining chapters explain the widgets that are provided by the Athena widget set. These user-
interface components serve as an interface for application programmers who do not want to implement
their own widgets. In addition, they serve as a starting point for those widget programmers who, using the
Intrinsics mechanisms, want to implement alternative application programming interfaces.

This chapter is a brief introduction to widget programming. The examples provided use the Athena
widgets, though most of the concepts will apply to all widget sets. Although there are several programming
interfaces to the X Toolkit, only one is described here. A full description of the programming interface is
provided in the document X Toolkit Intrinsics - C Language Interface.

Setting the Locale
If it is desirable that the application take advantage of internationalization (i18n), you must establish
locale with XtSetLanguageProc prior to calling XtOpenApplication, XtOpenDisplay,
XtDisplayInitialize, or XtAppInitialize. For full details, please refer to the document
X Toolkit Intrinsics - C Language Interface, section 2.2. However, the following simplest-case call is
sufficient in many or most applications.

 XtSetLanguageProc(NULL, NULL, NULL);

Most notably, this will affect the Standard C locale, determine which resource files will be loaded, and
what fonts will be required of FontSet specifications. In many cases, the addition of this line is the only
source change required to internationalize Xaw programs, and will not disturb the function of programs
in the default "C" locale.

Initializing the Toolkit
You must call a toolkit initialization function before invoking any other toolkit routines (besides locale
setting, above). XtOpenApplication, opens the X server connection, parses the command line, and
creates an initial widget that will serve as the root of a tree of widgets created by this application.

Widget XtOpenApplication(app_context_return, application_class,
options, num_options, argc_in_out, argv_in_out, fallback_resources,
widget_class, args, num_args);

app_context_return Returns the application context of this application, if non-NULL.

application_class Specifies the class name of this application, which is usually
the generic name for all instances of this application. A useful

6

Using Widgets

convention is to form the class name by capitalizing the first letter of
the application name. For example, the application named “xman”
has a class name of “Xman”.

options Specifies how to parse the command line for any application-
specific resources. The options argument is passed as a parameter
to XrmParseCommand. For further information, see Xlib - C
Language Interface.

num_options Specifies the number of entries in the options list.

argc_in_out Specifies a pointer to the number of command line parameters.

argv_in_out Specifies the command line parameters.

fallback_resources Specifies resource values to be used if the site-wide application
class defaults file cannot be opened, or NULL.

widget_class Specifies the class of the widget to be created. Must be
shellWidgetClass or a subclass.

args Specifies the argument list to use when creating the Application
shell.

num_args Specifies the number of arguments in args.

This function will remove the command line arguments that the toolkit reads from argc_in_out, and
argv_in_out. It will then attempt to open the display. If the display cannot be opened, an error message is
issued and XtAppInitialize terminates the application. Once the display is opened, all resources are read
from the locations specified by the Intrinsics. This function returns an ApplicationShell widget to be used
as the root of the application's widget tree.

Creating a Widget
 Creating a widget is a three-step process. First, the widget instance is allocated, and various instance-
specific attributes are set by using XtCreateWidget. Second, the widget's parent is informed of the
new child by using XtManageChild. Finally, X windows are created for the parent and all its children
by using XtRealizeWidget and specifying the top-most widget. The first two steps can be combined
by using XtCreateManagedWidget. In addition, XtRealizeWidget is automatically called
when the child becomes managed if the parent is already realized.

To allocate, initialize, and manage a widget, use XtCreateManagedWidget.

Widget XtCreateManagedWidget(name, widget_class, parent, args,
num_args);

name Specifies the instance name for the created widget that is used for
retrieving widget resources.

widget_class Specifies the widget class pointer for the created widget.

parent Specifies the parent widget ID.

args Specifies the argument list. The argument list is a variable-length
list composed of name and value pairs that contain information

7

Using Widgets

pertaining to the specific widget instance being created. For further
information, see Section 2.7.2.

num_args Specifies the number of arguments in the argument list. If the
num_args is zero, the argument list is never referenced.

When a widget instance is successfully created, the widget identifier is returned to the application. If an
error is encountered, the XtError routine is invoked to inform the user of the error.

For further information, see X Toolkit Intrinsics - C Language Interface.

Common Resources
Although a widget can have unique arguments that it understands, all widgets have common arguments that
provide some regularity of operation. The common arguments allow arbitrary widgets to be managed by
higher-level components without regard for the individual widget type. Widgets will ignore any argument
that they do not understand.

The following resources are retrieved from the argument list or from the resource database by all of the
Athena widgets:

Name Class Type Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

colormap Colormap Colormap Parent's Colormap

depth Depth int Parent's Depth

destroyCallback Callback XtCallbackList NULL

height Height Dimension widget dependent

mappedWhenManaged MappedWhenManaged Boolean True

screen Screen Screen Parent's Screen

sensitive Sensitive Boolean True

translations Translations TranslationTable widget dependent

width Width Dimension widget dependent

x Position Position 0

y Position Position 0

The following additional resources are retrieved from the argument list or from the resource database by
many of the Athena widgets:

Name Class Type Default Value

callback Callback XtCallbackList NULL

8

Using Widgets

Name Class Type Default Value

cursor Cursor Cursor widget dependent

foreground Foreground Pixel XtDefaultForeground

insensitiveBorder Insensitive Pixmap GreyPixmap

Resource Conversions
Most resources in the Athena widget set have a converter registered that will translate the string in a
resource file to the correct internal representation. While some are obvious (string to integer, for example),
others need specific mention of the allowable values. Three general converters are described here:

• Cursor

• Pixel

• Bitmap

Many widgets have defined special converters that apply only to that widget. When these occur, the
documentation section for that widget will describe the converter.

Cursor Conversion

The value for the cursorName resource is specified in the resource database as a string, and is of the
following forms:

• A standard X cursor name from <X11/cursorfont.h>. The names in cursorfont.h each
describe a specific cursor. The resource names for these cursors are exactly like the names in this file
except the XC_ is not used. The cursor definition XC_gumby has a resource name of gumby.

• Glyphs, as in FONT font-name glyph-index [[font-name] glyph-index]. The first font and glyph specify
the cursor source pixmap. The second font and glyph specify the cursor mask pixmap. The mask font
defaults to the source font, and the mask glyph index defaults to the source glyph index.

• A relative or absolute file name. If a relative or absolute file name is specified, that file is used to create
the source pixmap. Then the string "Mask" is appended to locate the cursor mask pixmap. If the "Mask"
file does not exist, the suffix "msk" is tried. If "msk" fails, no cursor mask will be used. If the filename
does not start with '/' or './' the the bitmap file path is used (see section 2.4.3).

Pixel Conversion

 The string-to-pixel converter takes any name that is acceptable to XParseColor (see Xlib - C Language
Interface). In addition this routine understands the special toolkit symbols `XtDefaultForeground' and
`XtDefaultBackground', described in X Toolkit Intrinsics - C Language Interface. In short the acceptable
pixel names are:

• Any color name for the rgb.txt file (typically in the directory /usr/share/X11 on POSIX systems).

• A numeric specification of the form #<red><green><blue> where these numeric values are hexadecimal
digits (both upper and lower case).

• The special strings `XtDefaultForeground' and `XtDefaultBackground'

9

Using Widgets

Bitmap Conversion

The string-to-bitmap converter attempts to locate a file containing bitmap data whose name is specified by
the input string. If the file name is relative (i.e. does not begin with / or ./), the directories to be searched
are specified in the bitmapFilePath resource--class BitmapFilePath. This resource specifies a
colon (:) separated list of directories that will be searched for the named bitmap or cursor glyph (see section
2.4.1). The bitmapFilePath resource is global to the application, and may not be specified differently
for each widget that wishes to convert a cursor to bitmap. In addition to the directories specified in the
bitmapFilePath resource a default directory is searched. When using POSIX the default directory is
/usr/include/X11/bitmaps.

Realizing a Widget
 The XtRealizeWidget function performs two tasks:

• Calculates the geometry constraints of all managed descendants of this widget. The actual calculation
is put off until realize time for performance reasons.

• Creates an X window for the widget and, if it is a composite widget, realizes each of its managed
children.

void XtRealizeWidget(w);

• Specifies the widget.

For further information about this function, see the X Toolkit Intrinsics - C Language Interface.

Processing Events
 Now that the application has created, managed and realized its widgets, it is ready to process the
events that will be delivered by the X Server to this client. A function call that will process the events
is XtAppMainLoop.

void XtAppMainLoop(app_context);

app_context Specifies the application context of this application. The value is
normally returned by XtOpenApplication.

This function never returns: it is an infinite loop that processes the X events. User input can be handled
through callback procedures and application defined action routines. More details are provided in X Toolkit
Intrinsics - C Language Interface.

Standard Widget Manipulation Functions
After a widget has been created, a client can interact with that widget by calling one of the standard widget
manipulation routines provided by the Intrinsics, or a widget class-specific manipulation routine.

The Intrinsics provide generic routines to give the application programmer access to a set of standard
widget functions. The common widget routines let an application or composite widget perform the
following operations on widgets without requiring explicit knowledge of the widget type.

• Control the mapping of widget windows

• Destroy a widget instance

10

Using Widgets

• Obtain an argument value

• Set an argument value

Mapping Widgets

By default, widget windows are mapped (made viewable) automatically by XtRealizeWidget. This
behavior can be disabled by using XtSetMappedWhenManaged, making the client responsible for
calling XtMapWidget to make the widget viewable.

void XtSetMappedWhenManaged(w, map_when_managed);

w Specifies the widget.

map_when_managed Specifies the new value. If map_when_managed is
True, the widget is mapped automatically when it is
realized. If map_when_managed is False, the client must
call XtMapWidget or make a second call to
XtSetMappedWhenManaged to cause the child window to be
mapped.

The definition for XtMapWidget is:

void XtMapWidget(w);

w Specifies the widget.

When you are creating several children in sequence for a previously realized common parent it is generally
more efficient to construct a list of children as they are created (using XtCreateWidget) and then
use XtManageChildren to request that their parent managed them all at once. By managing a list of
children at one time, the parent can avoid wasteful duplication of geometry processing and the associated
“screen flash”.

void XtManageChildren(children, num_children);

children Specifies a list of children to add.

num_children Specifies the number of children to add.

If the parent is already visible on the screen, it is especially important to batch updates so that the minimum
amount of visible window reconfiguration is performed.

For further information about these functions, see the X Toolkit Intrinsics - C Language Interface.

Destroying Widgets

To destroy a widget instance of any type, use XtDestroyWidget

void XtDestroyWidget(w);

w Specifies the widget.

XtDestroyWidget destroys the widget and recursively destroys any children that it may have,
including the windows created by its children. After calling XtDestroyWidget, no further references
should be made to the widget or any children that the destroyed widget may have had.

11

Using Widgets

Retrieving Widget Resource Values

To retrieve the current value of a resource attribute associated with a widget instance, use XtGetValues.

void XtGetValues(w, args, num_args);

w Specifies the widget.

args Specifies a variable-length argument list of name and address pairs
that contain the resource name and the address into which the resource
value is stored.

num_args Specifies the number of arguments in the argument list.

The arguments and values passed in the argument list are dependent on the widget. Note that the caller is
responsible for providing space into which the returned resource value is copied; the ArgList contains
a pointer to this storage (e.g. x and y must be allocated as Position). For further information, see the X
Toolkit Intrinsics - C Language Interface.

Modifying Widget Resource Values

To modify the current value of a resource attribute associated with a widget instance, use XtSetValues.

void XtSetValues(w, args, num_args);

w Specifies the widget.

args Specifies an array of name and value pairs that contain the arguments
to be modified and their new values.

num_args Specifies the number of arguments in the argument list.

The arguments and values that are passed will depend on the widget being modified. Some widgets may not
allow certain resources to be modified after the widget instance has been created or realized. No notification
is given if any part of a XtSetValues request is ignored.

For further information about these functions, see the X Toolkit Intrinsics - C Language Interface. The
argument list entry for XtGetValues specifies the address to which the caller wants the value copied.
The argument list entry for XtSetValues, however, contains the new value itself, if the size of value is
less than sizeof(XtArgVal) (architecture dependent, but at least sizeof(long)); otherwise, it is a pointer to
the value. String resources are always passed as pointers, regardless of the length of the string.

Using the Client Callback Interface
 Widgets can communicate changes in their state to their clients by means of a callback facility. The format
for a client's callback handler is:

void CallbackProc(w, client_data, call_data);

w Specifies widget for which the callback is registered.

client_data Specifies arbitrary client-supplied data that the widget should pass
back to the client when the widget executes the client's callback
procedure. This is a way for the client registering the callback to
also register client-specific data: a pointer to additional information

12

Using Widgets

about the widget, a reason for invoking the callback, and so on. If
no additional information is necessary, NULL may be passed as this
argument. This field is also frequently known as the closure.

call_data Specifies any callback-specific data the widget wants to pass to the
client. For example, when Scrollbar executes its jumpProc callback
list, it passes the current position of the thumb in call_data.

Callbacks can be registered either by creating an argument containing the callback list described below
or by using the special convenience routines XtAddCallback and XtAddCallbacks. When the
widget is created, a pointer to a list of callback procedure and data pairs can be passed in the argument list
to XtCreateWidget. The list is of type XtCallbackList :

typedef struct {
 XtCallbackProc callback;
 XtPointer closure;
} XtCallbackRec, *XtCallbackList;

The callback list must be allocated and initialized before calling XtCreateWidget. The end of the list
is identified by an entry containing NULL in callback and closure. Once the widget is created, the client
can change or de-allocate this list; the widget itself makes no further reference to it. The closure field
contains the client_data passed to the callback when the callback list is executed.

The second method for registering callbacks is to use XtAddCallback after the widget has been
created.

void XtAddCallback(w, callback_name, callback, client_data);

w Specifies the widget to add the callback to.

callback_name Specifies the callback list within the widget to append to.

callback Specifies the callback procedure to add.

client_data Specifies the data to be passed to the callback when it is invoked.

XtAddCallback adds the specified callback to the list for the named widget.

All widgets provide a callback list named destroyCallback where clients can register procedures
that are to be executed when the widget is destroyed. The destroy callbacks are executed when the widget
or an ancestor is destroyed. The call_data argument is unused for destroy callbacks.

Programming Considerations
This section provides some guidelines on how to set up an application program that uses the X Toolkit.

Writing Applications

 When writing an application that uses the X Toolkit, you should make sure that your application performs
the following:

1. Include <X11/Intrinsic.h> in your application programs. This header file automatically includes
<X11/Xlib.h>, so all Xlib functions also are defined. It may also be necessary to include <X11/

13

Using Widgets

StringDefs.h> when setting up argument lists, as many of the XtNsomething definitions are only
defined in this file.

2. Include the widget-specific header files for each widget type that you need to use. For example, <X11/
Xaw/Label.h> and <X11/Xaw/Command.h>.

3. Call the XtOpenApplication function before invoking any other toolkit or Xlib functions. For
further information, see Section 2.1 and the X Toolkit Intrinsics - C Language Interface.

4. To pass attributes to the widget creation routines that will override any site or user customizations, set
up argument lists. In this document, a list of valid argument names is provided in the discussion of
each widget. The names each have a global symbol defined that begins with XtN to help catch spelling
errors. For example, XtNlabel is defined for the label resource of many widgets.

For further information, see Section 2.9.2.2.

5. When the argument list is set up, create the widget with the XtCreateManagedWidget function.
For further information, see Section 2.2 and the X Toolkit Intrinsics - C Language Interface.

6. If the widget has any callback routines, set by the XtNcallback argument or the XtAddCallback
function, declare these routines within the application.

7. After creating the initial widget hierarchy, windows must be created for each widget by calling
XtRealizeWidget on the top level widget.

8. Most applications now sit in a loop processing events using XtAppMainLoop, for example:

XtCreateManagedWidget(name, class, parent, args, num_args);
XtRealizeWidget(shell);
XtAppMainLoop(app_context);

9. For information about this function, see the X Toolkit Intrinsics - C Language Interface.

10.Link your application with libXaw (the Athena widgets), libXmu (miscellaneous utilities), libXt
(the X Toolkit Intrinsics), libSM (Session Management), libICE (Inter-Client Exchange), libXext
(the extension library needed for the shape extension code which allows rounded Command buttons),
and libX11 (the core X library). The following provides a sample command line:

11.
cc -o application application.c -lXaw -lXmu -lXt -lSM -lICE -lXext -lX11

Changing Resource Values

The Intrinsics support two methods of changing the default resource values; the resource manager, and
an argument list passed into XtCreateWidget. While resources values will get updated no matter which
method you use, the two methods provide slightly different functionality.

Resource Manager This method picks up resource definitions described in Xlib - C Language
Interface from many different locations at run time. The locations most
important to the application programmer are the fallback resources and the app-
defaults file, (see X Toolkit Intrinsics - C Language Interface for the complete
list). Since these resource are loaded at run time, they can be overridden
by the user, allowing an application to be customized to fit the particular
needs of each individual user. These values can also be modified without the
need to rebuild the application, allowing rapid prototyping of user interfaces.

14

Using Widgets

Application programmers should use resources in preference to hard-coded
values whenever possible.

Argument Lists The values passed into the widget at creation time via an argument list cannot be
modified by the user, and allow no opportunity for customization. It is used to
set resources that cannot be specified as strings (e.g. callback lists) or resources
that should not be overridden (e.g. window depth) by the user.

Specifying Resources

It is important for all X Toolkit application programmers to understand how to use the X Resource Manager
to specify resources for widgets in an X application. This section will describe the most common methods
used to specify these resources, and how to use the X Resource manager.

Xrdb The xrdb utility may be used to load a file containing resources into the
X server. Once the resources are loaded, the resources will affect any new
applications started on the display that they were loaded onto.

Application Defaults The application defaults (app-defaults) file (normally in /usr/share/
X11/app-defaults/classname) for an application is loaded whenever the
application is started.

The resource specification has two colon-separated parts, a name, and a value. The value is a string whose
format is dependent on the resource specified by name. Name is constructed by appending a resource name
to a full widget name.

The full widget name is a list of the name of every ancestor of the desired widget separated by periods
(.). Each widget also has a class associated with it. A class is a type of widget (e.g. Label or Scrollbar or
Box). Notice that class names, by convention, begin with capital letters and instance names begin with
lower case letters. The class of any widget may be used in place of its name in a resource specification.
Here are a few examples:

xman.form.button1 This is a fully specified resource name, and will affect only widgets
called button1 that are children of widgets called form that are
children of applications named xman. (Note that while typically
two widgets that are siblings will have different names, it is not
prohibited.)

Xman.Form.Command This will match any Command widget that is a child of a Form
widget that is itself a child of an application of class Xman.

Xman.Form.button1 This is a mixed resource name with both widget names and classes
specified.

This syntax allows an application programmer to specify any widget in the widget tree. To match more
than one widget (for example a user may want to make all Command buttons blue), use an asterisk (*)
instead of a period. When an asterisk is used, any number of widgets (including zero) may exist between
the two widget names. For example:

Xman*Command This matches all Command widgets in the Xman application.

Foo*button1 This matches any widget in the Foo application that is named
button1.

The root of all application widget trees is the widget returned by XtOpenApplication. Even though
this is actually an ApplicationShell widget, the toolkit replaces its widget class with the class name of

15

Using Widgets

the application. The name of this widget is either the name used to invoke the application (argv[0])
or the name of the application specified using the standard -name command line option supported by the
Intrinsics.

The last step in constructing the resource name is to append the name of the resource with either a period
or asterisk to the full or partial widget name already constructed.

*foreground:Blue Specifies that all widgets in all applications will have a foreground
color of blue.

Xman*borderWidth:10 Specifies that all widgets in an application whose class is Xman will
have a border width of 10 (pixels).

xman.form.button1.label:Testing Specifies that a particular widget in the xman application will have
a label named Testing.

An exclamation point (!) in the first column of a line indicates that the rest of the line should be treated
as a comment.

Final Words

The Resource manager is a powerful tool that can be used very effectively to customize X Toolkit
applications at run time by either the application programmer or the user. Some final points to note:

• An application programmer may add new resources to their application. These resources are associated
with the global application, and not any particular widget. The X Toolkit function used for adding the
application resources is XtGetApplicationResources.

• Be careful when creating resource files. Since widgets will ignore resources that they do not understand,
any spelling errors will cause a resource to have no effect.

• Only one resource line will match any given resource. There is a set of precedence rules, which take
the following general stance.

• • More specific overrides less specific, thus period always overrides asterisk.

• Names on the left are more specific and override names on the right.

• When resource specifications are exactly the same, user defaults will override program defaults.

For a complete explanation of the rules of precedence, and other specific topics see X Toolkit Intrinsics -
C Language Interface and Xlib - C Language Interface.

Creating Argument Lists

To set up an argument list for the inline specification of widget attributes, you may use any of the
four approaches discussed in this section. Each resource name has a global symbol associated with
it. This global symbol has the form XtNresource name. For example, the symbol for “foreground” is
XtNforeground. For further information, see the X Toolkit Intrinsics - C Language Interface.

Argument are specified by using the following structure:

typedef struct {
 String name;

16

Using Widgets

 XtArgVal value;
} Arg, *ArgList;

The first approach is to statically initialize the argument list. For example:

static Arg arglist[] = {
 {XtNwidth, (XtArgVal) 400},
 {XtNheight, (XtArgVal) 300},
};

This approach is convenient for lists that do not need to be computed at runtime and makes adding or
deleting new elements easy. The XtNumber macro is used to compute the number of elements in the
argument list, preventing simple programming errors:

XtCreateWidget(name, class, parent, arglist, XtNumber(arglist));

The second approach is to use the XtSetArg macro. For example:

Arg arglist[10];
XtSetArg(arglist[1], XtNwidth, 400);
XtSetArg(arglist[2], XtNheight, 300);

To make it easier to insert and delete entries, you also can use a variable index:

Arg arglist[10];
Cardinal i=0;
XtSetArg(arglist[i], XtNwidth, 400); i++;
XtSetArg(arglist[i], XtNheight, 300); i++;

The i variable can then be used as the argument list count in the widget create function. In this example,
 XtNumber would return 10, not 2, and therefore is not useful. You should not use auto-increment or
auto-decrement within the first argument to XtSetArg. As it is currently implemented, XtSetArg is a
macro that dereferences the first argument twice.

The third approach is to individually set the elements of the argument list array:

Arg arglist[10];
arglist[0].name = XtNwidth;
arglist[0].value = (XtArgVal) 400;
arglist[1].name = XtNheight;
arglist[1].value = (XtArgVal) 300;

17

Using Widgets

Note that in this example, as in the previous example, XtNumber would return 10, not 2, and therefore
would not be useful.

The fourth approach is to use a mixture of the first and third approaches: you can statically define the
argument list but modify some entries at runtime. For example:

static Arg arglist[] = {
 {XtNwidth, (XtArgVal) 400},
 {XtNheight, (XtArgVal) NULL},
};
arglist[1].value = (XtArgVal) 300;

In this example, XtNumber can be used, as in the first approach, for easier code maintenance.

Example Programs
The best way to understand how to use any programming library is by trying some simple examples. A
collection of example programs that introduces each of the widgets in that Athena widget set, as well as
many important toolkit programming concepts, is available in the X11R5 contrib release as distributed by
the X Consortium. It can be found in the directory contrib/examples/Xaw in the archive at http://
www.x.org/releases/X11R5/contrib-1.tar.Z See the README file from that directory for a guide to the
examples.

18

http://www.x.org/releases/X11R5/contrib-1.tar.Z
http://www.x.org/releases/X11R5/contrib-1.tar.Z

Chapter 3. Simple Widgets
Each of these widgets performs a specific user interface function. They are simple because they cannot have
widget children—they may only be used as leaves of the widget tree. These widgets display information
or take user input.

Command A push button that, when selected, may cause a specific action to take place. This widget
can display a multi-line string or a bitmap or pixmap image.

Grip A rectangle that, when selected, will cause an action to take place.

Label A rectangle that can display a multi-line string or a bitmap or pixmap image.

List A list of text strings presented in row column format that may be individually selected.
When an element is selected an action may take place.

Panner A rectangular area containing a slider that may be moved in two dimensions. Notification
of movement may be continuous or discrete.

Repeater A push button that triggers an action at an increasing rate when selected. This widget can
display a multi-line string or a bitmap or pixmap image.

Scrollbar A rectangular area containing a thumb that when slid along one dimension may cause a
specific action to take place. The Scrollbar may be oriented horizontally or vertically.

Simple The base class for most of the simple widgets. Provides a rectangular area with a settable
mouse cursor and special border.

StripChart A real time data graph that will automatically update and scroll.

Toggle A push button that contains state information. Toggles may also be used as "radio
buttons" to implement a "one of many" or "zero or one of many" group of buttons. This
widget can display a multi-line string or a bitmap or pixmap image.

Command Widget

Application header file <X11/Xaw/Command.h>

Class header file <X11/Xaw/CommandP.h>

Class commandWidgetClass

Class Name Command

Superclass Label

The Command widget is an area, often rectangular, that contains text or a graphical image. Command
widgets are often referred to as “push buttons.” When the pointer is over a Command widget, the widget
becomes highlighted by drawing a rectangle around its perimeter. This highlighting indicates that the
widget is ready for selection. When mouse button 1 is pressed, the Command widget indicates that it has

19

Simple Widgets

been selected by reversing its foreground and background colors. When the mouse button is released, the
Command widget's notify action is invoked, calling all functions on its callback list. If the pointer is
moved off of the widget before the pointer button is released, the widget reverts to its normal foreground
and background colors, and releasing the pointer button has no effect. This behavior allows the user to
cancel an action.

Resources
When creating a Command widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

bitmap Bitmap Pixmap None

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

callback Callback XtCallbackList NULL

colormap Colormap Colormap Parent's Colormap

cornerRoundPercentCornerRoundPercent Dimension 25

cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

encoding Encoding UnsignedChar XawTextEncoding8bit

font Font XFontStruct XtDefaultFont

foreground Foreground Pixel XtDefaultForeground

height Height Dimension A graphic
height + 2 *

internalHeight

highlightThickness Thickness Dimension A 2 (0 if Shaped)

insensitiveBorder Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2

internalWidth Width Dimension 4

international International Boolean C False

justify Justify Justify XtJustifyCenter
(center)

label Label String name of widget

leftBitmap LeftBitmap Bitmap None

20

Simple Widgets

Name Class Type Notes Default Value

mappedWhenManagedMappedWhenManaged Boolean True

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

resize Resize Boolean True

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

shapeStyle ShapeStyle ShapeStyle Rectangle

translations Translations TranslationTable See below

width Width Dimension A graphic width + 2 *
internalWidth

x Position Position 0

y Position Position 0

_

Command Actions
The Command widget supports the following actions:

• Switching the button's interior between the foreground and background colors with set, unset, and
reset.

• Processing application callbacks with notify

• Switching the internal border between highlighted and unhighlighted states with highlight and
unhighlight

 The following are the default translation bindings used by the Command widget:

 <EnterWindow>: highlight()
 <LeaveWindow>: reset()
 <Btn1Down>: set()
 <Btn1Up>: notify() unset()

The full list of actions supported by Command is:

highlight(condition) Displays the internal highlight border in the color (foreground
or background) that contrasts with the interior color of the
Command widget. The conditions WhenUnset and Always are
understood by this action procedure. If no argument is passed,
WhenUnset is assumed.

unhighlight() Displays the internal highlight border in the color (foreground
or background) that matches the interior color of the Command
widget.

set() Enters the set state, in which notify is possible. This action
causes the button to display its interior in the foreground color.
The label or bitmap is displayed in the background color.

21

Simple Widgets

unset() Cancels the set state and displays the interior of the button in
the background color. The label or bitmap is displayed in the
foreground color.

reset() Cancels any set or highlight and displays the interior of the button
in the background color, with the label or bitmap displayed in
the foreground color.

notify() When the button is in the set state this action calls all functions in
the callback list named by the callback resource. The value of
the call_data argument passed to these functions is undefined.

A very common alternative to registering callbacks is to augment a Command's translations with an action
performing the desired function. This often takes the form of:

*Myapp*save.translations: #augment <Btn1Down>,<Btn1Up>: Save()

When a bitmap of depth greater that one (1) is specified the set(), unset(), and reset() actions have no
effect, since there are no foreground and background colors used in a multi-plane pixmap.

Grip Widget

Application header file <X11/Xaw/Grip.h>

Class header file <X11/Xaw/GripP.h>

Class gripWidgetClass

Class Name Grip

Superclass Simple

The Grip widget provides a small rectangular region in which user input events (such as ButtonPress or
ButtonRelease) may be handled. The most common use for the Grip widget is as an attachment point for
visually repositioning an object, such as the pane border in a Paned widget.

Resources
When creating a Grip widget instance, the following resources are retrieved from the argument list or from
the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

22

Simple Widgets

Name Class Type Notes Default Value

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 0

callback Callback Callback NULL

colormap Colormap Colormap Parent's Colormap

cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

foreground Foreground Pixel XtDefaultForeground

height Height Dimension 8

insensitiveBorder Insensitive Pixmap GreyPixmap

international International Boolean C False

mappedWhenManagedMappedWhenManaged Boolean True

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

translations Translations TranslationTable NULL

width Width Dimension 8

x Position Position 0

y Position Position 0

callback All routines on this list are called whenever the GripAction action
routine is invoked. The call_data contains all information passed to
the action routine. A detailed description is given below in the Grip
Actions section.

foreground A pixel value which indexes the widget's colormap to derive the color
used to flood fill the entire Grip widget.

Grip Actions
The Grip widget does not declare any default event translation bindings, but it does declare a single action
routine named GripAction. The client specifies an arbitrary event translation table, optionally giving
parameters to the GripAction routine.

The GripAction routine executes the callbacks on the callback list, passing as call_data a
pointer to a XawGripCallData structure, defined in the Grip widget's application header file.

23

Simple Widgets

typedef struct _XawGripCallData {
 XEvent *event;
 String *params;
 Cardinal num_params;
} XawGripCallDataRec, *XawGripCallData,
 GripCallDataRec, *GripCallData; /* supported for R4 compatibility */

In this structure, the event is a pointer to the input event that triggered the action. params and num_params
give the string parameters specified in the translation table for the particular event binding.

The following is an example of a translation table that uses the GripAction:

 <Btn1Down>: GripAction(press)
 <Btn1Motion>: GripAction(move)
 <Btn1Up>: GripAction(release)

For a complete description of the format of translation tables, see the X Toolkit Intrinsics - C Language
Interface.

Label Widget

Application header file <X11/Xaw/Label.h>

Class header file <X11/Xaw/LabelP.h>

Class labelWidgetClass

Class Name Label

Superclass Simple

A Label widget holds a graphic displayed within a rectangular region of the screen. The graphic may be
a text string containing multiple lines of characters in an 8 bit or 16 bit character set (to be displayed with
a font), or in a multi-byte encoding (for use with a fontset). The graphic may also be a bitmap or pixmap.
The Label widget will allow its graphic to be left, right, or center justified. Normally, this widget can be
neither selected nor directly edited by the user. It is intended for use as an output device only.

24

Simple Widgets

Resources
When creating a Label widget instance, the following resources are retrieved from the argument list or
from the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

bitmap Bitmap Pixmap None

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

colormap Colormap Colormap Parent's Colormap

cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

encoding Encoding UnsignedChar XawTextEncoding8bit

font Font XFontStruct XtDefaultFont

fontSet FontSet XFontSet XtDefaultFontSet

foreground Foreground Pixel XtDefaultForeground

height Height Dimension A graphic
height + 2 *

internalHeight

insensitiveBorder Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2

internalWidth Width Dimension 4

international International Boolean C False

justify Justify Justify XtJustifyCenter
(center)

label Label String name of widget

leftBitmap LeftBitmap Bitmap None

mappedWhenManagedMappedWhenManaged Boolean True

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

resize Resize Boolean True

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

25

Simple Widgets

Name Class Type Notes Default Value

translations Translations TranslationTable See above

width Width Dimension A graphic width + 2 *
internalWidth

x Position Position 0

y Position Position 0

List Widget

Application header file <X11/Xaw/List.h>

Class header file <X11/Xaw/ListP.h>

Class listWidgetClass

Class Name List

Superclass Simple

The List widget contains a list of strings formatted into rows and columns. When one of the strings is
selected, it is highlighted, and the List widget's Notify action is invoked, calling all routines on its
callback list. Only one string may be selected at a time.

Resources
When creating a List widget instance, the following resources are retrieved from the argument list or from
the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

callback Callback Callback NULL

colormap Colormap Colormap Parent's Colormap

columnSpacing Spacing Dimension 6

26

Simple Widgets

Name Class Type Notes Default Value

cursor Cursor Cursor XC_left_ptr

cursorName Cursor String NULL

defaultColumns Columns int 2

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

font Font FontStruct XtDefaultFont

fontSet FontSet XFontSet XtDefaultFontSet

forceColumns Columns Boolean False

foreground Foreground Pixel XtDefaultForeground

height Height Dimension A Enough space to
contain the list

insensitiveBorder Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2

internalWidth Width Dimension 4

international International Boolean C False

list List Pointer name of widget

longest Longest int A 0

mappedWhenManagedMappedWhenManaged Boolean True

numberStrings NumberStrings int A computed
for NULL

terminated list

pasteBuffer Boolean Boolean False

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

rowSpacing Spacing Dimension 2

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

translations Translations TranslationTable See below

verticalList Boolean Boolean False

width Width Dimension A Enough space to
contain the list

x Position Position 0

y Position Position 0

_

callback All functions on this list are called whenever the notify action
is invoked. The call_data argument contains information about
the element selected and is described in detail in the List
Callbacks section.

columnSpacing

27

Simple Widgets

rowSpacing The amount of space, in pixels, between each of the rows and
columns in the list.

defaultColumns The default number of columns. This value is used when neither
the width nor the height of the List widget is specified or when
forceColumns is True.

font The text font to use when displaying the list, when the
international resource is false.

fontSet The text font set to use when displaying the list, when the
international resource is true.

forceColumns Forces the default number of columns to be used regardless of the
List widget's current size.

foreground A pixel value which indexes the widget's colormap to derive the
color used to paint the text of the list elements.

internalHeight

internalWidth The margin, in pixels, between the edges of the list and the
corresponding edge of the List widget's window.

list An array of text strings displayed in the List widget. If
numberStrings is zero (the default) then the list must be
NULL terminated. If a value is not specified for the list, then
numberStrings is set to 1, and the name of the widget is used
as the list, and longest is set to the length of the name of the
widget. The list is used in place, and must be available to the
List widget for the lifetime of this widget, or until it is changed with
XtSetValues or XawListChange.

longest Specifies the width, in pixels, of the longest string in the current
list. The List widget will compute this value if zero (the default)
is specified. If this resource is set by hand, entries longer than this
will be clipped to fit.

numberStrings The number of strings in the current list. If a value of zero
(the default) is specified, the List widget will compute it. When
computing the number of strings the List widget assumes that the
list is NULL terminated.

pasteBuffer If this resource is set to True then the name of the currently
selected list element will be put into CUT_BUFFER_0.

verticalList If this resource is set to True then the list elements will be
presented in column major order.

List Actions
The List widget supports the following actions:

• Highlighting and unhighlighting the list element under the pointer with Set and Unset

28

Simple Widgets

• Processing application callbacks with Notify

The following is the default translation table used by the List Widget:

<Btn1Down>,<Btn1Up>: Set() Notify()

The full list of actions supported by List widget is:

Set() Sets the list element that is currently under the pointer. To inform the
user that this element is currently set, it is drawn with foreground and
background colors reversed. If this action is called when there is no list
element under the cursor, the currently set element will be unset.

Unset() Cancels the set state of the element under the pointer, and redraws it with
normal foreground and background colors.

Notify() Calls all callbacks on the List widget's callback list. Information about the
currently selected list element is passed in the call_data argument (see
List Callbacks below).

List Callbacks
All procedures on the List widget's callback list will have a XawListReturnStruct passed to them
as call_data. The structure is defined in the List widget's application header file.

typedef struct _XawListReturnStruct {
 String string; /* string shown in the list. */
 int list_index; /* index of the item selected. */
} XawListReturnStruct;

Note

The list_index item used to be called simply index. Unfortunately, this name collided with a global
name defined on some operating systems, and had to be changed.

Changing the List
To change the list that is displayed, use XawListChange.

void XawListChange(w, list, longest, resize);

w Specifies the List widget.

list Specifies the new list for the List widget to display.

29

Simple Widgets

nitems Specifies the number of items in the list. If a value less than 1 is specified,
list must be NULL terminated, and the number of items will be calculated
by the List widget.

longest Specifies the length of the longest item in the list in pixels. If a value less
than 1 is specified, the List widget will calculate the value.

resize Specifies a Boolean value that if True indicates that the List widget should
try to resize itself after making the change. The constraints of the List
widget's parent are always enforced, regardless of the value specified here.

XawListChange will unset all list elements that are currently set before the list is actually changed.
The list is used in place, and must remain usable for the lifetime of the List widget, or until list has been
changed again with this function or with XtSetValues.

Highlighting an Item
To highlight an item in the list, use XawListHighlight.

void XawListHighlight(w, item);

w Specifies the List widget.

item Specifies an index into the current list that indicates the item to be highlighted.

Only one item can be highlighted at a time. If an item is already highlighted when XawListHighlight
is called, the highlighted item is unhighlighted before the new item is highlighted.

Unhighlighting an Item
To unhighlight the currently highlighted item in the list, use XawListUnhighlight.

void XawListUnhighlight(w);

w Specifies the List widget.

Retrieving the Currently Selected Item
To retrieve the list element that is currently set, use XawListShowCurrent.

XawListReturnStruct *XawListShowCurrent(w);

w Specifies the List widget.

XawListShowCurrent returns a pointer to an XawListReturnStruct structure, containing the
currently highlighted item. If the value of the index member is XAW_LIST_NONE, the string member
is undefined, and no item is currently selected.

Restrictions
Many programmers create a “scrolled list” by putting a List widget with many entries as a child of a
Viewport widget. The List continues to create a window as big as its contents, but that big window is only
visible where it intersects the parent Viewport's window. (I.e., it is “clipped.”)

30

Simple Widgets

While this is a useful technique, there is a serious drawback. X does not support windows above 32,767
pixels in width or height, but this height limit will be exceeded by a List's window when the List has many
entries (i.e., with a 12 point font, about 3000 entries would be too many.)

Panner Widget

Application header file <X11/Xaw/Panner.h>

Class header file <X11/Xaw/PannerP.h>

Class pannerWidgetClass

Class Name Panner

Superclass Simple

A Panner widget is a rectangle, called the “canvas,” on which another rectangle, the “slider,” moves in two
dimensions. It is often used with a Porthole widget to move, or “scroll,” a third widget in two dimensions,
in which case the slider's size and position gives feedback as to what portion of the third widget is visible.

The slider may be scrolled around the canvas by pressing, dragging, and releasing Button1; the default
translation also enables scrolling via arrow keys and some other keys. While scrolling is in progress,
the application receives notification through callback procedures. Notification may be done either
continuously whenever the slider moves or discretely whenever the slider has been given a new location.

Resources
When creating a Panner widget instance, the following resources are retrieved from the argument list or
from the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

allowOff AllowOff Boolean False

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

backgroundStipple BackgroundStipple String NULL

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

canvasHeight CanvasHeight Dimension 0

31

Simple Widgets

Name Class Type Notes Default Value

canvasWidth CanvasWidth Dimension 0

colormap Colormap Colormap Parent's Colormap

cursor Cursor Cursor None

cursorName Cursor String NULL

defaultScale DefaultScale Dimension 8

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

foreground Foreground Pixel XtDefaultForeground

height Height Dimension A depends on
orientation

internalSpace InternalSpace Dimension 4

international International Boolean C False

lineWidth LineWidth Dimension 0

mappedWhenManagedMappedWhenManaged Boolean True

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

reportCallback ReportCallback Callback NULL

resize Resize Boolean True

rubberBand RubberBand Boolean False

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

shadowColor ShadowColor Pixel XtDefaultForeground

shadowThickness ShadowThickness Dimension 2

sliderX SliderX Position 0

sliderY SliderY Position 0

sliderHeight SliderHeight Dimension 0

sliderWidth SliderWidth Dimension 0

translations Translations TranslationTable See below

width Width Dimension A depends on
orientation

x Position Position 0

y Position Position 0

allowOff Whether to allow the edges of the slider to go off the edges of the
canvas.

backgroundStipple The name of a bitmap pattern to be used as the background for the
area representing the canvas.

canvasHeight

canvasWidth The size of the canvas.

32

Simple Widgets

defaultScale The percentage size that the Panner widget should have relative to
the size of the canvas.

foreground A pixel value which indexes the widget's colormap to derive the
color used to draw the slider.

internalSpace The width of internal border in pixels between a slider representing
the full size of the canvas and the edge of the Panner widget.

lineWidth The width of the lines in the rubberbanding rectangle when
rubberbanding is in effect instead of continuous scrolling. The
default is 0.

reportCallback All functions on this callback list are called when the notify
action is invoked. See the Panner Actions section for details.

resize Whether or not to resize the panner whenever the canvas size is
changed so that the defaultScale is maintained.

rubberBand Whether or not scrolling should be discrete (only moving a
rubberbanded rectangle until the scrolling is done) or continuous
(moving the slider itself). This controls whether or not the move
action procedure also invokes the notify action procedure.

shadowColor The color of the shadow underneath the slider.

shadowThickness The width of the shadow underneath the slider.

sliderX

sliderY The location of the slider in the coordinates of the canvas.

sliderHeight

sliderWidth The size of the slider.

Panner Actions
The actions supported by the Panner widget are:

start() This action begins movement of the slider.

stop() This action ends movement of the slider.

abort() This action ends movement of the slider and restores it to the
position it held when the start action was invoked.

move() This action moves the outline of the slider (if the rubberBand
resource is True) or the slider itself (by invoking the notify action
procedure).

page(xamount,yamount) This action moves the slider by the specified amounts. The format
for the amounts is a signed or unsigned floating-point number (e.g.,
+1.0 or -.5) followed by either p indicating pages (slider sizes), or
c indicating canvas sizes. Thus, page(+0,+.5p) represents vertical

33

Simple Widgets

movement down one-half the height of the slider and page(0,0)
represents moving to the upper left corner of the canvas.

notify() This action informs the application of the slider's current position
by invoking the reportCallback functions registered by the
application.

set(what,value) This action changes the behavior of the Panner. The what argument
must currently be the string rubberband and controls the value of
the rubberBand resource. The value argument may have one
of the values on, off, or toggle.

The default bindings for Panner are:

 <Btn1Down>: start()
 <Btn1Motion>: move()
 <Btn1Up>: notify() stop()
 <Btn2Down>: abort()
 <Key>KP_Enter: set(rubberband,toggle)
 <Key>space: page(+1p,+1p)
 <Key>Delete: page(-1p,-1p)
 <Key>BackSpace: page(-1p,-1p)
 <Key>Left: page(-.5p,+0)
 <Key>Right: page(+.5p,+0)
 <Key>Up: page(+0,-.5p)
 <Key>Down: page(+0,+.5p)
 <Key>Home: page(0,0)

Panner Callbacks
The functions registered on the reportCallback list are invoked by the notify action as follows:

void ReportProc(panner, client_data, report);

panner Specifies the Panner widget.

panner Specifies the client data.

panner Specifies a pointer to an XawPannerReport structure containing the location and size of
the slider and the size of the canvas.

Repeater Widget

Application header file <X11/Xaw/Repeater.h>

Class header file <X11/Xaw/RepeaterP.h>

34

Simple Widgets

Class repeaterWidgetClass

Class Name Repeater

Superclass Command

The Repeater widget is a subclass of the Command widget; see the Command documentation for details.
The difference is that the Repeater can call its registered callbacks repeatedly, at an increasing rate. The
default translation does so for the duration the user holds down pointer button 1 while the pointer is on
the Repeater.

Resources
When creating a Repeater widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

bitmap Bitmap Pixmap None

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

callback Callback XtCallbackList NULL

colormap Colormap Colormap Parent's Colormap

cornerRoundPercentCornerRoundPercent Dimension 25

cursor Cursor Cursor None

cursorName Cursor String NULL

decay Decay Int 5

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

encoding Encoding UnsignedChar XawTextEncoding8bit

flash Boolean Boolean False

font Font XFontStruct XtDefaultFont

fontSet FontSet XFontSet XtDefaultFontSet

foreground Foreground Pixel XtDefaultForeground

height Height Dimension A graphic
height + 2 *

internalHeight

35

Simple Widgets

Name Class Type Notes Default Value

highlightThickness Thickness Dimension A 2 (0 if Shaped)

initialDelay Delay Int 200

insensitiveBorder Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2

internalWidth Width Dimension 4

international International Boolean C False

justify Justify Justify XtJustifyCenter
(center)

label Label String name of widget

leftBitmap LeftBitmap Bitmap None

mappedWhenManagedMappedWhenManaged Boolean True

minimumDelay MinimumDelay Int 10

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

repeatDelay Delay Int 50

resize Resize Boolean True

screen Screen Pointer R Parent's Screen

sensitive Sensitive Boolean True

shapeStyle ShapeStyle ShapeStyle Rectangle

startCallback StartCallback Callback NULL

stopCallback StopCallback Callback NULL

translations Translations TranslationTable See below

width Width Dimension A graphic width + 2 *
internalWidth

x Position Position 0

y Position Position 0

\" Resource Descriptions

decay The number of milliseconds that should be subtracted from each
succeeding interval while the Repeater button is being held down
until the interval has reached minimumDelay milliseconds.

flash Whether or not to flash the Repeater button whenever the timer goes
off.

initialDelay The number of milliseconds between the beginning of the Repeater
button being held down and the first invocation of the callback
function.

minimumDelay The minimum time between callbacks in milliseconds.

repeatDelay The number of milliseconds between each callback after the first
(minus an increasing number of decays).

36

Simple Widgets

startCallback The list of functions to invoke by the start action (typically when
the Repeater button is first pressed). The callback data parameter
is set to NULL.

stopCallback The list of functions to invoke by the stop action (typically when
the Repeater button is released). The callback data parameter is set
to NULL.

Repeater Actions
The Repeater widget supports the following actions beyond those of the Command button:

start() This invokes the functions on the startCallback and callback lists
and sets a timer to go off in initialDelay milliseconds. The timer will
cause the callback functions to be invoked with increasing frequency
until the stop action occurs.

stop() This invokes the functions on the stopCallback list and prevents any
further timers from occurring until the next start action.

 The following are the default translation bindings used by the Repeater widget:

 <EnterWindow>: highlight()
 <LeaveWindow>: unhighlight()
 <Btn1Down>: set() start()
 <Btn1Up>: stop() unset()

Scrollbar Widget

Application header file <X11/Xaw/Scrollbar.h>
Class header file <X11/Xaw/ScrollbarP.h>
Class scrollbarWidgetClass
Class Name Scrollbar
Superclass Simple

A Scrollbar widget is a rectangle, called the “canvas,” on which another rectangle, the “thumb,” moves in
one dimension, either vertically or horizontally. A Scrollbar can be used alone, as a value generator, or it
can be used within a composite widget (for example, a Viewport). When a Scrollbar is used to move, or
“scroll,” the contents of another widget, the size and the position of the thumb usually give feedback as
to what portion of the other widget's contents are visible.

Each pointer button invokes a specific action. Pointer buttons 1 and 3 do not move the thumb automatically.
Instead, they return the pixel position of the cursor on the scroll region. When pointer button 2 is clicked,
the thumb moves to the current pointer position. When pointer button 2 is held down and the pointer is
moved, the thumb follows the pointer.

The pointer cursor in the scroll region changes depending on the current action. When no pointer button is
pressed, the cursor appears as a double-headed arrow that points in the direction that scrolling can occur.
When pointer button 1 or 3 is pressed, the cursor appears as a single-headed arrow that points in the logical

37

Simple Widgets

direction that the thumb will move. When pointer button 2 is pressed, the cursor appears as an arrow that
points to the top or the left of the thumb.

When the user scrolls, the application receives notification through callback procedures. For both discrete
scrolling actions, the callback returns the Scrollbar widget, the client_data, and the pixel position of the
pointer when the button was released. For continuous scrolling, the callback routine returns the scroll bar
widget, the client data, and the current relative position of the thumb. When the thumb is moved using
pointer button 2, the callback procedure is invoked continuously. When either button 1 or 3 is pressed,
the callback procedure is invoked only when the button is released and the client callback procedure is
responsible for moving the thumb.

Resources
When creating a Scrollbar widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

colormap Colormap Colormap parent's Colormap

cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int C parent's Depth

destroyCallback Callback XtCallbackList NULL

foreground Foreground Pixel XtDefaultForeground

height Height Dimension A depends on
orientation

insensitiveBorder Insensitive Pixmap GreyPixmap

international International Boolean C False

jumpProc Callback XtCallbackList NULL

length Length Dimension 1

mappedWhenManagedMappedWhenManaged Boolean True

minimumThumb MinimumThumb Dimension 7

orientation Orientation Orientation XtorientVertical
(vertical)

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

screen Screen Screen R parent's Screen

scrollDCursor Cursor Cursor XC_sb_down_arrow

38

Simple Widgets

Name Class Type Notes Default Value

scrollHCursor Cursor Cursor XC_sb_h_double_arrow

scrollLCursor Cursor Cursor XC_sb_left_arrow

scrollProc Callback XtCallbackList NULL

scrollRCursor Cursor Cursor XC_sb_right_arrow

scrollUCursor Cursor Cursor XC_sb_up_arrow

scrollVCursor Cursor Cursor XC_sb_v_arrow

sensitive Sensitive Boolean True

shown Shown Float 0.0

thickness Thickness Dimension 14

thumb Thumb Bitmap GreyPixmap

thumbProc Callback XtCallbackList NULL

topOfThumb TopOfThumb Float 0.0

translations Translations TranslationTable See below

width Width Dimension A depends on
orientation

x Position Position 0

y Position Position 0

foreground A pixel value which indexes the widget's colormap to derive the
color used to draw the thumb.

jumpProc All functions on this callback list are called when the
NotifyThumb action is invoked. See the section called “Scrollbar
Actions” for details.

length The height of a vertical scrollbar or the width of a horizontal
scrollbar.

minimumThumb The smallest size, in pixels, to which the thumb can shrink.

orientation The orientation is the direction that the thumb will be allowed
to move. This value can be either XtorientVertical or
XtorientHorizontal.

scrollDCursor This cursor is used when scrolling backward in a vertical scrollbar.

scrollHCursor This cursor is used when a horizontal scrollbar is inactive.

scrollLCursor This cursor is used when scrolling forward in a horizontal scrollbar.

scrollProc All functions on this callback list may be called when the
NotifyScroll action is invoked. See the section called
“Scrollbar Actions” for details.

scrollRCursor This cursor is used when scrolling backward in a horizontal
scrollbar, or when thumbing a vertical scrollbar.

scrollUCursor This cursor is used when scrolling forward in a vertical scrollbar,
or when thumbing a horizontal scrollbar.

39

Simple Widgets

scrollVCursor This cursor is used when a vertical scrollbar is inactive.

shown This is the size of the thumb, expressed as a percentage (0.0 - 1.0)
of the length of the scrollbar.

thickness The width of a vertical scrollbar or the height of a horizontal
scrollbar.

thumb This pixmap is used to tile (or stipple) the thumb of the scrollbar.
If no tiling is desired, then set this resource to None. This resource
will accept either a bitmap or a pixmap that is the same depth as
the window. The resource converter for this resource constructs
bitmaps from the contents of files. (See Converting Bitmaps
for details.)

topOfThumb The location of the top of the thumb, as a percentage (0.0 - 1.0) of
the length of the scrollbar. This resource was called top in previous
versions of the Athena widget set. The name collided with the a
Form widget constraint resource, and had to be changed.

Scrollbar Actions
The actions supported by the Scrollbar widget are:

StartScroll(value) The possible values are Forward, Backward, or Continuous. This
must be the first action to begin a new movement.

NotifyScroll(value) The possible values are Proportional or FullLength. If the argument
to StartScroll was Forward or Backward, NotifyScroll executes
the scrollProc callbacks and passes either; the position of the
pointer, if value is Proportional, or the full length of the scroll bar, if
value is FullLength. If the argument to StartScroll was Continuous,
NotifyScroll returns without executing any callbacks.

EndScroll() This must be the last action after a movement is complete.

MoveThumb() Repositions the Scrollbar's thumb to the current pointer location.

NotifyThumb()\ Calls the callbacks and passes the relative position of the pointer as
a percentage of the scroll bar length.

The default bindings for Scrollbar are:

 <Btn1Down>: StartScroll(Forward)
 <Btn2Down>: StartScroll(Continuous) MoveThumb() NotifyThumb()
 <Btn3Down>: StartScroll(Backward)
 <Btn2Motion>: MoveThumb() NotifyThumb()
 <BtnUp>: NotifyScroll(Proportional) EndScroll()

Examples of additional bindings a user might wish to specify in a resource file are:

*Scrollbar.Translations: \\
 ~Meta<Key>space: StartScroll(Forward) NotifyScroll(FullLength) \\n\\

40

Simple Widgets

 Meta<Key>space: StartScroll(Backward) NotifyScroll(FullLength) \\n\\
 EndScroll()

Scrollbar Callbacks
There are two callback lists provided by the Scrollbar widget. The procedural interface for these functions
is described here.

The calling interface to the scrollProc callback procedure is:

void ScrollProc(scrollbar, client_data, position);

scrollbar Specifies the Scrollbar widget.

client_data Specifies the client data.

position Specifies a pixel position in integer form.

The scrollProc callback is used for incremental scrolling and is called by the NotifyScroll action.
The position argument is a signed quantity and should be cast to an int when used. Using the default
button bindings, button 1 returns a positive value, and button 3 returns a negative value. In both cases, the
magnitude of the value is the distance of the pointer in pixels from the top (or left) of the Scrollbar. The
value will never be greater than the length of the Scrollbar.

The calling interface to the jumpProc callback procedure is:

void JumpProc(scrollbar, client_data, percent_ptr);

scrollbar Specifies the ID of the scroll bar widget.

client_data Specifies the client data.

percent_ptr Specifies the floating point position of the thumb (0.0 – 1.0).

The jumpProc callback is used to implement smooth scrolling and is called by the NotifyThumb
action. Percent_ptr must be cast to a pointer to float before use; i.e.

 float percent = *(float*)percent_ptr;

With the default button bindings, button 2 moves the thumb interactively, and the jumpProc is called on
each new position of the pointer, while the pointer button remains down. The value specified by percent_ptr
is the current location of the thumb (from the top or left of the Scrollbar) expressed as a percentage of
the length of the Scrollbar.

Convenience Routines
 To set the position and length of a Scrollbar thumb, use

void XawScrollbarSetThumb(w, top, shown);

w Specifies the Scrollbar widget.

top Specifies the position of the top of the thumb as a fraction of the length of
the Scrollbar.

41

Simple Widgets

shown Specifies the length of the thumb as a fraction of the total length of the
Scrollbar.

XawScrollbarThumb moves the visible thumb to a new position (0.0 – 1.0) and length (0.0 – 1.0).
Either the top or shown arguments can be specified as -1.0, in which case the current value is left
unchanged. Values greater than 1.0 are truncated to 1.0.

If called from jumpProc, XawScrollbarSetThumb has no effect.

Setting Float Resources
The shown and topOfThumb resources are of type float. These resources can be difficult to get into an
argument list. The reason is that C performs an automatic cast of the float value to an integer value, usually
truncating the important information. The following code fragment is one portable method of getting a
float into an argument list.

 top = 0.5;
 if (sizeof(float) > sizeof(XtArgVal)) {
 /*
 * If a float is larger than an XtArgVal then pass this
 * resource value by reference.
 */
 XtSetArg(args[0], XtNshown, &top);
 }
 else {
 /*
 * Convince C not to perform an automatic conversion, which
 * would truncate 0.5 to 0.
 */
 XtArgVal * l_top = (XtArgVal *) ⊤
 XtSetArg(args[0], XtNshown, *l_top);
 }

Simple Widget

Application Header file <Xaw/Simple.h>

Class Header file <Xaw/SimpleP.h>

Class simpleWidgetClass

Class Name Simple

Superclass Core

The Simple widget is not very useful by itself, as it has no semantics of its own. It main purpose is to be
used as a common superclass for the other simple Athena widgets. This widget adds six resources to the
resource list provided by the Core widget and its superclasses.

42

Simple Widgets

Resources
When creating a Simple widget instance, the following resources are retrieved from the argument list or
from the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

colormap Colormap Colormap Parent's Colormap

cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

height Height Dimension 0

insensitiveBorder Insensitive Pixmap GreyPixmap

international International Boolean C False

mappedWhenManagedMappedWhenManaged Boolean True

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

translations Translations TranslationTable NULL

width Width Dimension 0

x Position Position 0

y Position Position 0

StripChart Widget

Application Header file <Xaw/StripChart.h>

Class Header file <Xaw/StripCharP.h>

Class stripChartWidgetClass

43

Simple Widgets

Class Name StripChart

Superclass Simple

The StripChart widget is used to provide a roughly real time graphical chart of a single value. For example,
it is used by the common client program xload to provide a graph of processor load. The StripChart reads
data from an application, and updates the chart at the update interval specified.

Resources
When creating a StripChart widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

colormap Colormap Colormap Parent's Colormap

cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

foreground Foreground Pixel XtDefaultForeground

getValue Callback XtCallbackList NULL

height Height Dimension 120

highlight Foreground Pixel XtDefaultForeground

insensitiveBorder Insensitive Pixmap GreyPixmap

international International Boolean C False

jumpScroll JumpScroll int A half the width
of the widget

mappedWhenManagedMappedWhenManaged Boolean True

minScale Scale int 1

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

screen Screen Pointer R Parent's Screen

sensitive Sensitive Boolean True

44

Simple Widgets

Name Class Type Notes Default Value

translations Translations TranslationTable NULL

update Interval int 10

width Width Dimension 120

x Position Position 0

y Position Position 0

foreground A pixel value which indexes the widget's colormap to derive the color
that will be used to draw the graph.

getValue A list of callback functions to call every update seconds. This list
should contain one function, which returns the value to be graphed by
the StripChart widget. The following section describes the procedural
interface. Behavior when this list has more than one function is
undefined.

highlight A pixel value which indexes the widget's colormap to derive the color
that will be used to draw the scale lines on the graph.

jumpScroll When the graph reaches the right edge of the window it must be
scrolled to the left. This resource specifies the number of pixels it will
jump. Smooth scrolling can be achieved by setting this resource to 1.

minScale The minimum scale for the graph. The number of divisions on the
graph will always be greater than or equal to this value.

update The number of seconds between graph updates. Each update is
represented on the graph as a 1 pixel wide line. Every update seconds
the getValue procedure will be used to get a new graph point, and
this point will be added to the right end of the StripChart.

Getting the StripChart Value
The StripChart widget will call the application routine passed to it as the getValue callback function
every update seconds to obtain another point for the StripChart graph.

The calling interface for the getValue callback is:

void(*getValueProc)(w, client_data, value);

w Specifies the StripChart widget.

client_data Specifies the client data.

value Returns a pointer to a double. The application should set the address
pointed to by this argument to a double containing the value to be
graphed on the StripChart.

This function is used by the StripChart to call an application routine. The routine will pass the value to be
graphed back to the the StripChart in the value field of this routine.

Toggle Widget

45

Simple Widgets

Application Header file <Xaw/Toggle.h>
Class Header file <Xaw/ToggleP.h>
Class toggleWidgetClass
Class Name Toggle
Superclass Command

The Toggle widget is an area, often rectangular, that displays a graphic. The graphic may be a text string
containing multiple lines of characters in an 8 bit or 16 bit character set (to be displayed with a font), or in
a multi-byte encoding (for use with a fontset). The graphic may also be a bitmap or pixmap.

This widget maintains a Boolean state (e.g. True/False or On/Off) and changes state whenever it is selected.
When the pointer is on the Toggle widget, the Toggle widget may become highlighted by drawing a
rectangle around its perimeter. This highlighting indicates that the Toggle widget is ready for selection.
When pointer button 1 is pressed and released, the Toggle widget indicates that it has changed state by
reversing its foreground and background colors, and its notify action is invoked, calling all functions on
its callback list. If the pointer is moved off of the widget before the pointer button is released, the Toggle
widget reverts to its previous foreground and background colors, and releasing the pointer button has no
effect. This behavior allows the user to cancel the operation.

Toggle widgets may also be part of a “radio group.” A radio group is a list of at least two Toggle widgets
in which no more than one Toggle may be set at any time. A radio group is identified by the widget ID of
any one of its members. The convenience routine XawToggleGetCurrent will return information
about the Toggle widget in the radio group.

Toggle widget state is preserved across changes in sensitivity.

Resources
When creating a Toggle widget instance, the following resources are retrieved from the argument list or
from the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

bitmap Bitmap Pixmap None

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

callback Callback XtCallbackList NULL

colormap Colormap Colormap Parent's Colormap

cornerRoundPercentCornerRoundPercent Dimension 25

cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

encoding Encoding UnsignedChar XawTextEncoding8bit

46

Simple Widgets

Name Class Type Notes Default Value

font Font XFontStruct XtDefaultFont

fontSet FontSet XFontSet XtDefaultFontSet

foreground Foreground Pixel XtDefaultForeground

height Height Dimension A graphic
height + 2 *

internalHeight

highlightThickness Thickness Dimension A 2 (0 if Shaped)

insensitiveBorder Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2

internalWidth Width Dimension 4

international International Boolean C False

justify Justify Justify XtJustifyCenter
(center)

label Label String name of widget

leftBitmap LeftBitmap Bitmap None

mappedWhenManagedMappedWhenManaged Boolean True

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

radioData RadioData Pointer Name of widget

radioGroup Widget Widget No radio group

resize Resize Boolean True

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

shapeStype ShapeStyle ShapeStyle Rectangle

state State Boolean Off

translations Translations TranslationTable See below

width Width Dimension A graphic width + 2 *
internalWidth

x Position Position 0

y Position Position 0

radioData Specifies the data that will be returned by
XawToggleGetCurrent when this is the currently set widget in
the radio group. This value is also used to identify the Toggle that will
be set by a call to XawToggleSetCurrent. The value NULL will
be returned by XawToggleGetCurrent if no widget in a radio
group is currently set. Programmers must not specify NULL (or Zero)
as radioData.

radioGroup Specifies another Toggle widget that is in the radio group to which this
Toggle widget should be added. A radio group is a group of at least two
Toggle widgets, only one of which may be set at a time. If this value is
NULL (the default) then the Toggle will not be part of any radio group

47

Simple Widgets

and can change state without affecting any other Toggle widgets. If the
widget specified in this resource is not already in a radio group then a
new radio group will be created containing these two Toggle widgets.
No Toggle widget can be in multiple radio groups. The behavior of a
radio group of one toggle is undefined. A converter is registered which
will convert widget names to widgets without caching.

state Specifies whether the Toggle widget is set (True) or unset (False).

Toggle Actions
The Toggle widget supports the following actions:

• Switching the Toggle widget between the foreground and background colors with set and unset and
toggle

• Processing application callbacks with notify

• Switching the internal border between highlighted and unhighlighted states with highlight and
unhighlight

The following are the default translation bindings used by the Toggle widget:

 <EnterWindow>: highlight(Always)
 <LeaveWindow>: unhighlight()
 <Btn1Down>,<Btn1Up>: toggle() notify()

Toggle Actions
The full list of actions supported by Toggle is:

highlight(condition) Displays the internal highlight border in the color (foreground
or background) that contrasts with the interior color of the
Toggle widget. The conditions WhenUnset and Always are
understood by this action procedure. If no argument is passed then
WhenUnset is assumed.

unhighlight() Displays the internal highlight border in the color (foreground
or background) that matches the interior color of the Toggle
widget.

set() Enters the set state, in which notify is possible. This
action causes the Toggle widget to display its interior in the
foreground color. The label or bitmap is displayed in the
background color.

unset() Cancels the set state and displays the interior of the Toggle widget
in the background color. The label or bitmap is displayed in the
foreground color.

toggle() Changes the current state of the Toggle widget, causing to be set
if it was previously unset, and unset if it was previously set. If the
widget is to be set, and is in a radio group then this procedure may
unset another Toggle widget causing all routines on its callback list

48

Simple Widgets

to be invoked. The callback routines for the Toggle that is to be
unset will be called before the one that is to be set.

reset() Cancels any set or highlight and displays the interior of the
Toggle widget in the background color, with the label displayed
in the foreground color.

notify() When the Toggle widget is in the set state this action calls all
functions in the callback list named by the callback resource.
The value of the call_data argument in these callback functions is
undefined.

When a bitmap of depth greater that one (1) is specified the set(), unset(), and reset() actions have no
effect, since there are no foreground and background colors used in a multi-plane pixmap.

Radio Groups
There are typically two types of radio groups desired by applications. The default translations for the
Toggle widget implement a "zero or one of many" radio group. This means that there may be no more
than one Toggle widget active, but there need not be any Toggle widgets active.

The other type of radio group is "one of many" and has the more strict policy that there will always
be exactly one radio button active. Toggle widgets can be used to provide this interface with a slight
modification to the translation table of each Toggle in the group.

 <EnterWindow>: highlight(Always)
 <LeaveWindow>: unhighlight()
 <Btn1Down>,<Btn1Up>: set() notify()

This translation table will not allow any Toggle to be unset except as a result of another Toggle becoming
set. It is the application programmer's responsibility to choose an initial state for the radio group by setting
the state resource of one of its member widgets to True.

Convenience Routines
The following functions allow easy access to the Toggle widget's radio group functionality.

Changing the Toggle's Radio Group.

To enable an application to change the Toggle's radio group, add the Toggle to a radio group, or remove
the Toggle from a radio group, use XawToggleChangeRadioGroup.

void XawToggleChangeRadioGroup(radio_group);

w Specifies the Toggle widget.

radio_group Specifies any Toggle in the new radio group. If NULL then the
Toggle will be removed from any radio group of which it is a
member.

If a Toggle is already set in the new radio group, and the Toggle to be added is also set then the previously
set Toggle in the radio group is unset and its callback procedures are invoked. Finding the Currently
selected Toggle in a radio group of Toggles

49

Simple Widgets

To find the currently selected Toggle in a radio group of Toggle widgets use XawToggleGetCurrent.

XtPointer XawToggleGetCurrent(XawToggleGetCurrent(radio_group),
radio_group);

radio_group Specifies any Toggle widget in the radio group.

The value returned by this function is the radioData of the Toggle in this radio group that is currently
set. The default value for radioData is the name of that Toggle widget. If no Toggle is set in the radio
group specified then NULL is returned. Changing the Toggle that is set in a radio group.

To change the Toggle that is currently set in a radio group use XawToggleSetCurrent.

void XawToggleSetCurrent(radio_data), radio_group, radio_data);

radio_group Specifies any Toggle widget in the radio group.

radio_data Specifies the radioData identifying the Toggle that should be set
in the radio group specified by the radio_group argument.

XawToggleSetCurrent locates the Toggle widget to be set by matching radio_data against the
radioData for each Toggle in the radio group. If none match, XawToggleSetCurrent returns
without making any changes. If more than one Toggle matches, XawToggleSetCurrent will choose
a Toggle to set arbitrarily. If this causes any Toggle widgets to change state, all routines in their callback
lists will be invoked. The callback routines for a Toggle that is to be unset will be called before the one
that is to be set. Unsetting all Toggles in a radio group.

To unset all Toggle widgets in a radio group use XawToggleUnsetCurrent.

void XawToggleUnsetCurrent(XawToggleUnsetCurrent(radio_group),
radio_group);

radio_group Specifies any Toggle widget in the radio group.

If this causes a Toggle widget to change state, all routines on its callback list will be invoked.

50

Chapter 4. Menus
The Athena widget set provides support for single paned non-hierarchical popup and pulldown menus.
Since menus are such a common user interface tool, support for them must be provided in even the most
basic widget sets. In menuing as in other areas, the Athena Widget Set provides only basic functionality.

Menus in the Athena widget set are implemented as a menu container (the SimpleMenu widget) and a
collection of objects that comprise the menu entries. The SimpleMenu widget is itself a direct subclass of
the OverrideShell widget class, so no other shell is necessary when creating a menu. The managed children
of a SimpleMenu must be subclasses of the Sme (Simple Menu Entry) object.

The Athena widget set provides three classes of Sme objects that may be used to build menus.

Sme The base class of all menu entries. It may be used as a menu entry itself to provide blank
space in a menu. "Sme" means "Simple Menu Entry."

SmeBSB This menu entry provides a selectable entry containing a text string. A bitmap may also be
placed in the left and right margins. "BSB" means "Bitmap String Bitmap."

SmeLine This menu entry provides an unselectable entry containing a separator line.

The SimpleMenu widget informs the window manager that it should ignore its window by setting the
Override Redirect flag. This is the correct behavior for the press-drag-release style of menu
operation. If click-move-click or "pinable" menus are desired it is the responsibility of the application
programmer, using the SimpleMenu resources, to inform the window manager of the menu.

To allow easy creation of pulldown menus, a MenuButton widget is also provided as part of the Athena
widget set.

Using the Menus
The default configuration for the menus is press-drag-release. The menus will typically be activated by
clicking a pointer button while the pointer is over a MenuButton, causing the menu to appear in a fixed
location relative to that button; this is a pulldown menu. Menus may also be activated when a specific
pointer and/or key sequence is used anywhere in the application; this is a popup menu (e.g. clicking Ctrl-
<pointer button 1> in the common application xterm). In this case the menu should be positioned under
the cursor. Typically menus will be placed so the pointer cursor is on the first menu entry, or the last entry
selected by the user.

The menu remains on the screen as long as the pointer button is held down. Moving the pointer will
highlight different menu items. If the pointer leaves the menu, or moves over an entry that cannot be
selected then no menu entry will highlighted. When the desired menu entry has been highlighted, releasing
the pointer button removes the menu, and causes any mechanism associated with this entry to be invoked.

SimpleMenu Widget

Application Header file <X11/Xaw/SimpleMenu.h>

51

Menus

Class Header file <X11/Xaw/SimpleMenP.h>

Class simpleMenuWidgetClass

Class Name SimpleMenu

Superclass OverrideShell

The SimpleMenu widget is a container for the menu entries. It is a direct subclass of shell, and is should be
created with XtCreatePopupShell, not XtCreateManagedWidget. This is the only part of the
menu that actually is associated with a window. The SimpleMenu serves as the glue to bind the individual
menu entries together into a menu.

Resources

The resources associated with the SimpleMenu widget control aspects that will affect the entire menu.

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

allowShellResize AllowShellResize Boolean True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

backingStore BackingStore BackingStore see below

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

bottomMargin VerticalMargins Dimension 0

children ReadOnly WidgetList R NULL

createPopupChildProcCreatePopupChildProc Function NULL

colormap Colormap Colormap Parent's Colormap

cursor Cursor Cursor None

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

geometry Geometry String NULL

height Height Dimension Enough space to
contain all entries

label Label String NULL

labelClass LabelClass Pointer SmeBSBObjectClass

mappedWhenManagedMappedWhenManaged Boolean True

menuOnScreen MenuOnScreen Boolean True

numChildren ReadOnly Cardinal R 0

52

Menus

Name Class Type Notes Default Value

overrideRedirect OverrideRedirect Boolean True

popdownCallback Callback XtCallbackList NULL

popupCallback Callback XtCallbackList NULL

popupOnEntry PopupOnEntry Widget A Label or first entry

rowHeight RowHeight Dimension 0

saveUnder SaveUnder Boolean False

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

topMargin VerticalMargins Dimension 0

translations Translations TranslationTable See below

visual Visual Visual CopyFromParent

width Width Dimension Width of
widest entry

x Position Position 0

y Position Position 0

backingStore Determines what type of backing store will be used for the menu.
Legal values for this resource are NotUseful, WhenMapped,
and Always. These values are the backing-store integers defined
in <X11/X.h>. If default is specified (the default behavior) the
server will use whatever it thinks is appropriate.

bottomMargin

topMargin The amount of space between the top or bottom of the menu and
the menu entry closest to that edge.

cursor The shape of the mouse pointer whenever it is in this widget.

geometry If this resource is specified it will override the x, y, width and height
of this widget. The format of this string is [<width>x<height>][{+
-} <xoffset> {+ -}<yoffset>].

label This label will be placed at the top of the SimpleMenu, and may
not be highlighted. The name of the label object is menuLabel.
Using this name it is possible to modify the label's attributes through
the resource database. When the label is created, the label is
hard coded to the value of label, and justify is hard coded as
XtJustifyCenter.

labelClass Specifies the type of Sme object created as the menu label.

menuOnScreen If the menu is automatically positioned under the cursor with the
XawPositionSimpleMenu action, and this resource is True,
then the menu will always be fully visible on the screen.

overrideRedirect Determines the value of the override_redirect attribute of the
SimpleMenu's window. The override_redirect attribute of a

53

Menus

window determines whether or not a window manager may
interpose itself between this window and the root window of the
display. For more information see the Interclient Communications
Conventions Manual.

popdownCallback

popupCallback These callback functions are called by the Xt Intrinsics whenever
the shell is popped up or down (See (xT for details).

popupOnEntry The XawPositionSimpleMenu action will, by default, popup
the SimpleMenu with its label (or first entry) directly under the
pointer. To popup the menu under another entry, set this resource
to the menu entry that should be under the pointer, when the menu
is popped up. This allows the application to offer the user a default
menu entry that can be selected with out moving the pointer.

rowHeight If this resources is zero (the default) then each menu entry will be
given its desired height. If this resource has any other value then all
menu entries will be forced to be rowHeight pixels high.

saveUnder If this is True then save unders will be active on the menu's
window.

SimpleMenu Actions
The SimpleMenu widget supports the following actions:

• Switching the entry under the mouse pointer between the foreground and background colors with
highlight and unhighlight

• Processing menu entry callbacks with notify

 The following are the default translation bindings used by the SimpleMenu widget:

 <EnterWindow>: highlight()
 <LeaveWindow>: unhighlight()
 <BtnMotion>: highlight()
 <BtnUp>: MenuPopdown() notify() unhighlight()

 The user can pop down the menu without activating any of the callback functions by releasing the pointer
button when no menu item is highlighted.

The full list of actions supported by SimpleMenu is:

highlight() Highlight the menu entry that is currently under the pointer. Only
a item that is highlighted will be notified when the notify action
is invoked. The look of a highlighted entry is determined by the
menu entry.

unhighlight() Unhighlights the currently highlighted menu item, and returns it to
its normal look.

54

Menus

notify() Notifies the menu entry that is currently highlighted that is has
been selected. It is the responsibility of the menu entry to take the
appropriate action.

MenuPopdown(menu) This action is defined in (xT.

Positioning the SimpleMenu
If the SimpleMenu widget is to be used as a pulldown menu then the MenuButton widget, or some other
outside means should be used to place the menu when it is popped up.

If popup menus are desired it will be necessary to add the XawPositionSimpleMenu and
MenuPopup actions to the translation table of the widget that will be popping up the menu. The
MenuPopup action is described in (xT. XawPositionSimpleMenu is a global action procedure
registered by the SimpleMenu widget when the first one is created or the convenience routine
XawSimpleMenuAddGlobalActions is called.

Translation writers should be aware that Xt does not register grabs on “don't care” modifiers, and therefore
the left hand side of the production should be written to exclude unspecified modifiers. For example these
are the translations needed to popup some of xterm's menus:

 !Ctrl<Btn1Down>: XawPositionSimpleMenu(xterm) MenuPopup(xterm)
 !Ctrl<Btn2Down>: XawPositionSimpleMenu(modes) MenuPopup(modes)

XawPositionSimpleMenu(menu)The XawPositionSimpleMenu routine will search for the
menu name passed to it using XtNameToWidget starting with
the widget invoking the action as the reference widget. If it is
unsuccessful it will continue up the widget tree using each of
the invoking widget's ancestors as the reference widget. If it is
still unsuccessful it will print a warning message and give up.
XawPositionSimpleMenu will position the menu directly
under the pointer cursor. The menu will be placed so that the pointer
cursor is centered on the entry named by the popupOnEntry
resource. If the menuOnScreen resource is True then the menu
will always be fully visible on the screen.

Convenience Routines

Registering the Global Action Routines

 The XawPositionSimpleMenu action routine may often be invoked before any menus have been
created. This can occur when an application uses dynamic menu creation. In these cases an application
will need to register this global action routine by calling XawSimpleMenuAddGlobalActions:

void XawSimpleMenuAddGlobalActions(app_con);

app_con Specifies the application context in which this action should be registered.

This function need only be called once per application and must be called before any widget that uses
XawPositionSimpleMenu action is realized.

55

Menus

Getting and Clearing the Current Menu Entry

To get the currently highlighted menu entry use XawSimpleMenuGetActiveEntry:

Widget XawSimpleMenuGetActiveEntry(w);

w Specifies the SimpleMenu widget.

This function returns the menu entry that is currently highlighted, or NULL if no entry is highlighted.

To clear the SimpleMenu widget's internal information about the currently highlighted menu entry use
XawSimpleMenuClearActiveEntry:

Widget XawSimpleMenuClearActiveEntry(w);

w Specifies the SimpleMenu widget.

This function unsets all internal references to the currently highlighted menu entry. It does not unhighlight
or otherwise alter the appearance of the active entry. This function is primarily for use by implementors
of menu entries.

SmeBSB Object

Application Header file <X11/Xaw/SmeBSB.h>

Class Header file <X11/Xaw/SmeBSBP.h>

Class smeBSBObjectClass

Class Name SmeBSB

Superclass Sme

The SmeBSB object is used to create a menu entry that contains a string, and optional bitmaps in its left and
right margins. Since each menu entry is an independent object, the application is able to change the font,
color, height, and other attributes of the menu entries, on an entry by entry basis. The format of the string
may either be the encoding of the 8 bit font utilized, or in a multi-byte encoding for use with a fontSet.

Resources
The resources associated with the SmeBSB object are defined in this section, and affect only the single
menu entry specified by this object.

Name Class Type Notes Default Value

ancestorSensitive AncestorSensitive Boolean D True

56

Menus

Name Class Type Notes Default Value

callback Callback Callback NULL

destroyCallback Callback XtCallbackList NULL

font Font FontStruct XtDefaultFont

fontSet FontSet XFontSet XtDefaultFontSet

foreground Foreground Pixel XtDefaultForeground

height Height Dimension A Font height +
vertSpace

international International Boolean C False

justify Justify Justify XtjustifyLeft

label Label String NULL

leftBitmap LeftBitmap Pixmap XtUnspecifiedPixmap

leftMargin leftMargin Dimension 4

rightBitmap RightBitmap Pixmap XtUnspecifiedPixmap

rightMargin rightMargin Dimension 4

sensitive Sensitive Boolean True

vertSpace VertSpace int 25

width Width Dimension A TextWidth
+ margins

callback All callback functions on this list are called when the SimpleMenu notifies this entry
that the user has selected it.

font The text font to use when displaying the label, when the international resource
is false.

fontSet The text font set to use when displaying the label, when the international
resource is true.

foreground A pixel value which indexes the SimpleMenu's colormap to derive the foreground color
of the menu entry's window. This color is also used to render all 1's in the left and right
bitmaps. Keep in mind that the SimpleMenu widget will force the width of all menu
entries to be the width of the longest entry.

justify How the label is to be rendered between the left and right margins when the
space is wider than the actual text. This resource may be specified with the values
XtJustifyLeft, XtJustifyCenter, or XtJustifyRight. When specifying
the justification from a resource file the values left, center, or right may be used.

label This is a the string that will be displayed in the menu entry. The exact location of
this string within the bounds of the menu entry is controlled by the leftMargin,
rightMargin, vertSpace, and justify resources.

leftBitmap

rightBitmap This is a name of a bitmap to display in the left or right margin of the menu entry. All 1's
in the bitmap will be rendered in the foreground color, and all 0's will be drawn in the
background color of the SimpleMenu widget. It is the programmers' responsibility to
make sure that the menu entry is tall enough, and the appropriate margin wide enough

57

Menus

to accept the bitmap. If care is not taken the bitmap may extend into another menu
entry, or into this entry's label.

leftMargin

rightMargin This is the amount of space (in pixels) that will be left between the edge of the menu
entry and the label string.

vertSpace This is the amount of vertical padding, expressed as a percentage of the height of the
font, that is to be placed around the label of a menu entry.. The label and bitmaps are
always centered vertically within the menu. The default value for this resource (25)
causes the default height to be 125% of the height of the font.

SmeLine Object

Application Header file <X11/Xaw/SmeLine.h>

Class Header file <X11/Xaw/SmeLineP.h>

Class smeLineObjectClass

Class Name SmeLine

Superclass Sme

The SmeLine object is used to add a horizontal line or menu separator to a menu. Since each SmeLine
is an independent object, the application is able to change the color, height, and other attributes of the
SmeLine objects on an entry by entry basis. This object is not selectable, and will not highlight when the
pointer cursor is over it.

Resources
The resources associated with the SmeLine object are defined in this section, and affect only the single
menu entry specified by this object.

Name Class Type Notes Default Value

destroyCallback Callback XtCallbackList NULL

foreground Foreground Pixel XtDefaultForeground

height Height Dimension lineWidth

international International Boolean C False

lineWidth LineWidth Dimension 1

stipple Stipple Pixmap XtUnspecifiedPixmap

width Width Dimension 1

foreground A pixel value which indexes the SimpleMenu's colormap to derive the foreground color
used to draw the separator line. Keep in mind that the SimpleMenu widget will force

58

Menus

all menu items to be the width of the widest entry. Thus, setting the width is generally
not very important.

lineWidth The width of the horizontal line that is to be displayed.

stipple If a bitmap is specified for this resource, the line will be stippled through it. This allows
the menu separator to be rendered as something more exciting than just a line. For
instance, if you define a stipple that is a chain link, then your menu separators will look
like chains.

Sme Object

Application Header file <X11/Xaw/Sme.h>

Class Header file <X11/Xaw/SmeP.h>

Class smeObjectClass

Class Name Sme

Superclass RectObj

The Sme object is the base class for all menu entries. While this object is mainly intended to be subclassed,
it may be used in a menu to add blank space between menu entries.

Resources
The resources associated with the SmeLine object are defined in this section, and affect only the single
menu entry specified by this object. There are no new resources added for this class, as it picks up all its
resources from the RectObj class.

Name Class Type Notes Default Value

ancestorSensitive AncestorSensitive Boolean True

callback Callback XtCallbackList NULL

destroyCallback Callback XtCallbackList NULL

height Height Dimension 0

international International Boolean C False

sensitive Sensitive Boolean True

width Width Dimension 1

Keep in mind that the SimpleMenu widget will force all menu items to be the width of the widest entry.

Subclassing the Sme Object
To Create a new Sme object class you will need to define three class methods. These methods allow the
SimpleMenu to highlight and unhighlight the menu entry as the pointer cursor moves over it, as well as

59

Menus

notify the entry when the user has selected it. All of these methods may be inherited from the Sme object,
although the default semantics are not very interesting.

Highlight() Called to put the menu entry into the highlighted state.

Unhighlight() Called to return the widget to its normal (unhighlighted) state.

Notify() Called when the user selects this menu entry.

Other then these methods, creating a new object is straight forward. Here is some information that may
help you avoid some common mistakes.

1. Objects can be zero pixels high.

2. Objects draw on their parent's window, therefore the Drawing dimensions are different from those of
widgets. For instance, y locations vary from y to y + height, not 0 to height.

3. XtSetValues calls may come from the application while the Sme is highlighted, and if the SetValues
method returns True, will result in an expose event. The SimpleMenu may later call the menu entry's
unhighlight procedure. However, due to the asynchronous nature of X, the expose event generated
by XtSetValues will come after this unhighlight.

4. Remember that your subclass of the Sme does not own the window. Share the space with other menu
entries, and refrain from drawing outside the subclass's own section of the menu.

MenuButton Widget

Application Header file <X11/Xaw/MenuButton.h>

Class Header file <X11/Xaw/MenuButtonP.h>

Class menuButtonWidgetClass

Class Name MenuButton

Superclass Command

The MenuButton widget is an area, often rectangular, that displays a graphic. The graphic may be a text
string containing multiple lines of characters in an 8 bit or 16 bit character set (to be displayed with a font),
or in a multi-byte encoding (for use with a fontset). The graphic may also be a bitmap or pixmap.

When the pointer cursor is on a MenuButton widget, the MenuButton becomes highlighted by drawing
a rectangle around its perimeter. This highlighting indicates that the MenuButton is ready for selection.
When a pointer button is pressed, the MenuButton widget will pop up the menu named in the menuName
resource.

Resources
When creating a MenuButton widget instance, the following resources are retrieved from the argument
list or from the resource database:

60

Menus

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

bitmap Bitmap Pixmap None

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

callback Callback XtCallbackList NULL

colormap Colormap Colormap Parent's Colormap

cornerRoundPercentCornerRoundPercent Dimension 25

cursor Cursor Cursor None

cursorName Cursor String None

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

encoding Encoding UnsignedChar XawTextEncoding8bit

font Font XFontStruct XtDefaultFont

fontSet FontSet XFontSet XtDefaultFontSet

foreground Foreground Pixel XtDefaultForeground

height Height Dimension A graphic
height + 2 *

internalHeight

highlightThickness Thickness Dimension A 2 (0 if Shaped)

insensitiveBorder Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2

internalWidth Width Dimension 4

international International Boolean C False

justify Justify Justify XtJustifyCenter
(center)

label Label String name of widget

leftBitmap LeftBitmap Bitmap None

mappedWhenManagedMappedWhenManaged Boolean True

menuName MenuName String "menu"

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

resize Resize Boolean True

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

61

Menus

Name Class Type Notes Default Value

shapeStype ShapeStyle ShapeStyle Rectangle

translations Translations TranslationTable See below

width Width Dimension A graphic width + 2 *
internalWidth

x Position Position 0

y Position Position 0

_

menuName The name of a popup shell to popup as a menu. The MenuButton will
search for this name using XtNameToWidget starting with itself as the
reference widget. If the search is unsuccessful the widget will continue up
the widget tree using each of its ancestors as the reference widget passed
to XtNameToWidget. If no widget of called menuName is found by
this algorithm, the widget will print a warning message and give up. When
the menu is found it will be popped up exclusive and spring_loaded. The
MenuButton widget does not copy the value of this resource into newly
allocated memory. The application programmer must pass the resource
value in nonvolatile memory.

MenuButton Actions
The MenuButton widget supports the following actions:

• Switching the button between the foreground and background colors with set and unset

• Processing application callbacks with notify

• Switching the internal border between highlighted and unhighlighted states with highlight and
unhighlight

• Popping up a menu with PopupMenu

The following are the default translation bindings used by the MenuButton widget:

 <EnterWindow>: highlight()
 <LeaveWindow>: reset()
 <BtnDown>: reset() PopupMenu(\)

MenuButton Actions
The full list of actions supported by MenuButton is:

highlight(condition) Displays the internal highlight border in the color (foreground
or background) that contrasts with the interior color of the
Command widget. The conditions WhenUnset and Always are
understood by this action procedure. If no argument is passed,
WhenUnset is assumed.

62

Menus

unhighlight() Displays the internal highlight border in the color
(XtNforeground or background) that matches the interior
color of the MenuButton widget.

set() Enters the set state, in which notify is possible. This action
causes the button to display its interior in the foreground color.
The label or bitmap is displayed in the background color.

unset() Cancels the set state and displays the interior of the button in
the background color. The label or bitmap is displayed in the
foreground color.

reset() Cancels any set or highlight and displays the interior of the
button in the background color, with the label displayed in the
foreground color.

notify() When the button is in the set state this action calls all functions in
the callback list named by the callback resource. The value of
the call_data argument in these callback functions is undefined.

PopupMenu() Pops up the menu specified by the menuName resource.

The MenuButton widget does not place a server grab on itself. Instead, PopupMenu is registered as a grab
action. As a result, clients which popup menus without using XtMenuPopup or MenuPopup or PopupMenu
in translations will fail to have a grab active. They should make a call to XtRegisterGrabAction on the
appropriate action in the application initialization routine, or use a different translation.

63

Chapter 5. Text Widgets
The Text widget provides a window that will allow an application to display and edit one or more lines of
text. Options are provided to allow the user to add Scrollbars to its window, search for a specific string,
and modify the text in the buffer.

The Text widget is made up of a number of pieces; it was modularized to ease customization. The AsciiText
widget class (actually not limited to ASCII but so named for compatibility) is be general enough to
most needs. If more flexibility, special features, or extra functionality is needed, they can be added by
implementing a new TextSource or TextSink, or by subclassing the Text Widget (See Section 5.8 for
customization details.)

The words insertion point are used in this chapter to refer to the text caret. This is the symbol that
is displayed between two characters in the file. The insertion point marks the location where any new
characters will be added to the file. To avoid confusion the pointer cursor will always be referred to as
the pointer.

The text widget supports three edit modes, controlling the types of modifications a user is allowed to make:

• Append-only

• Editable

• Read-only

Read-only mode does not allow the user or the programmer to modify the text in the widget. While the
entire string may be reset in read-only mode with XtSetValues, it cannot be modified via with
XawTextReplace. Append-only and editable modes allow the text at the insertion point to be modified.
The only difference is that text may only be added to or removed from the end of a buffer in append-
only mode.

Text Widget for Users
The Text widget provides many of the common keyboard editing commands. These commands allow users
to move around and edit the buffer. If an illegal operation is attempted, (such as deleting characters in a
read-only text widget), the X server will beep.

Default Key Bindings

The default key bindings are patterned after those in the EMACS text editor:

Ctrl-a Beginning Of Line Meta-b Backward Word
Ctrl-b Backward Character Meta-f Forward Word
Ctrl-d Delete Next Character Meta-i Insert File
Ctrl-e End Of Line Meta-k Kill To End Of Paragraph
Ctrl-f Forward Character Meta-q Form Paragraph
Ctrl-g Multiply Reset Meta-v Previous Page
Ctrl-h Delete Previous Character Meta-y Insert Current Selection

64

Text Widgets

Ctrl-j Newline And Indent Meta-z Scroll One Line Down
Ctrl-k Kill To End Of Line Meta-d Delete Next Word
Ctrl-l Redraw Display Meta-D Kill Word
Ctrl-m Newline Meta-h Delete Previous Word
Ctrl-n Next Line Meta-H Backward Kill Word
Ctrl-o Newline And Backup Meta-< Beginning Of File
Ctrl-p Previous Line Meta-> End Of File
Ctrl-r Search/Replace Backward Meta-] Forward Paragraph
Ctrl-s Search/Replace Forward Meta-[Backward Paragraph
Ctrl-t Transpose Characters
Ctrl-u Multiply by 4 Meta-Delete Delete Previous Word
Ctrl-v Next Page Meta-Shift Delete Kill Previous Word
Ctrl-w Kill Selection Meta-Backspace Delete Previous Word
Ctrl-y Unkill Meta-Shift Backspace Kill Previous Word
Ctrl-z Scroll One Line Up
Ctrl-\\ Reconnect to input method
Kanji Reconnect to input method

In addition, the pointer may be used to cut and paste text:

 Button 1 Down Start Selection
 Button 1 Motion Adjust Selection
 Button 1 Up End Selection (cut)

 Button 2 Down Insert Current Selection (paste)

 Button 3 Down Extend Current Selection
 Button 3 Motion Adjust Selection
 Button 3 Up End Selection (cut)

Since all of these key and pointer bindings are set through the translations and resource manager, the
user and the application programmer can modify them by changing the Text widget's translations
resource.

Search and Replace
The Text widget provides a search popup that can be used to search for a string within the current Text
widget. The popup can be activated by typing either Control-r or Control-s. If Control-s is used the search
will be forward in the file from the current location of the insertion point; if Control-r is used the search
will be backward. The activated popup is placed under the pointer. It has a number of buttons that allow
both text searches and text replacements to be performed.

At the top of the search popup are two toggle buttons labeled backward and forward. One of these buttons
will always be highlighted; this is the direction in which the search will be performed. The user can change
the direction at any time by clicking on the appropriate button.

Directly under the buttons there are two text areas, one labeled Search for: and the other labeled Replace
with:. If this is a read-only Text widget the Replace with: field will be insensitive and no replacements will
be allowed. After each of these labels will be a text field. This field will allow the user to enter a string to
search for and the string to replace it with. Only one of these text fields will have a window border around

65

Text Widgets

it; this is the active text field. Any key presses that occur when the focus in in the search popup will be
directed to the active text field. There are also a few special key sequences:

Carriage Return: Execute the action, and pop down the search widget.
Tab: Execute the action, then move to the next field.
Shift Carriage Return: Execute the action, then move to the next field.
Control-q Tab: Enter a Tab into a text field.
Control-c: Pop down the search popup.

Using these special key sequences should allow simple searches without ever removing one's hands from
the keyboard.

Near the bottom of the search popup is a row of buttons. These buttons allow the same actions to to be
performed as the key sequences, but the buttons will leave the popup active. This can be quite useful if
many searches are being performed, as the popup will be left on the display. Since the search popup is
a transient window, it may be picked up with the window manager and pulled off to the side for use at
a later time.

Search Search for the specified string.

Replace Replace the currently highlighted string with the string in the Replace with text field, and
move onto the next occurrence of the Search for text field. The functionality is commonly
referred to as query-replace.

ReplaceAll Replace all occurrences of the search string with the replace string from the current
insertion point position to the end (or beginning) of the file. There is no key sequence
to perform this action.

ReplaceAll Remove the search popup from the screen.

Finally, when international resource is true, there may be a pre-edit buffer below the button
row, for composing input. Its presence is determined by the X locale in use and the VendorShell's
preeditType resource.

The widget hierarchy for the search popup is show below, all widgets are listed by class and instance name.

Text <name of Text widget>
 TransientShell search
 Form form
 Label label1
 Label label2
 Toggle backwards
 Toggle forwards
 Label searchLabel
 Text searchText
 Label replaceLabel
 Text replaceText
 Command search
 Command replaceOne
 Command replaceAll
 Command cancel

66

Text Widgets

File Insertion
 To insert a file into a text widget, type the key sequence Meta-i, which will activate the file insert popup.
This popup will appear under the pointer, and any text typed while the focus is in this popup will be
redirected to the text field used for the filename. When the desired filename has been entered, click on
Insert File, or type Carriage Return. The named file will then be inserted in the text widget beginning
at the insertion point position. If an error occurs when opening the file, an error message will be printed,
prompting the user to enter the filename again. The file insert may be aborted by clicking on Cancel. If
Meta-i is typed at a text widget that is read-only, it will beep, as no file insertion is allowed.

The widget hierarchy for the file insert popup is show below; all widgets are listed by class and instance
name.

Text <name of Text widget>
 TransientShell insertFile
 Form form
 Label label
 Text text
 Command insert
 Command cancel

Text Selections for Users
 The text widgets have a text selection mechanism that allows the user to copy pieces of the text into the
PRIMARY selection, and paste into the text widget some text that another application (or text widget) has
put in the PRIMARY selection.

One method of selecting text is to press pointer button 1 on the beginning of the text to be selected, drag
the pointer until all of the desired text is highlighted, and then release the button to activate the selection.
Another method is to click pointer button 1 at one end of the text to be selected, then click pointer button
3 at the other end.

To modify a currently active selection, press pointer button 3 near either the end of the selection that you
want to adjust. This end of the selection may be moved while holding down pointer button 3. When the
proper area has been highlighted release the pointer button to activate the selection.

The selected text may now be pasted into another application, and will remain active until some other
client makes a selection. To paste text that some other application has put into the PRIMARY selection
use pointer button 2. First place the insertion point where you would like the text to be inserted, then click
and release pointer button 2.

Rapidly clicking pointer button 1 the following number of times will adjust the selection as described.

Two Select the word under the pointer. A word boundary is defined by the Text
widget to be a Space, Tab, or Carriage Return.

Three Select the line under the pointer.

Four Select the paragraph under the pointer. A paragraph boundary is defined by
the text widget as two Carriage Returns in a row with only Spaces or Tabs
between them.

Five Select the entire text buffer.

To unset the text selection, click pointer button 1 without moving it.

67

Text Widgets

Text Widget Actions
 All editing functions are performed by translation manager actions that may be specified through the
translations resource in the Text widget.

Insert Point Movement Delete
 forward-character delete-next-character
 backward-character delete-previous-character
 forward-word delete-next-word
 backward-word delete-previous-word
 forward-paragraph delete-selection
 backward-paragraph
 beginning-of-line
 end-of-line Selection
 next-line select-word
 previous-line select-all
 next-page select-start
 previous-page select-adjust
 beginning-of-file select-end
 end-of-file extend-start
 scroll-one-line-up extend-adjust
 scroll-one-line-down extend-end
 insert-selection

Miscellaneous New Line
 redraw-display newline-and-indent
 insert-file newline-and-backup
 insert-char newline
 insert-string
 display-caret
 focus-in Kill
 focus-in kill-word
 search backward-kill-word
 multiply kill-selection
 form-paragraph kill-to-end-of-line
 transpose-characters kill-paragraph
 no-op kill-to-end-of-paragraph
 XawWMProtocols
 reconnect-im

Most of the actions take no arguments, and unless otherwise noted you may assume this to be the case.

Cursor Movement Actions
forward-character()

backward-character() These actions move the insert point forward or backward one
character in the buffer. If the insert point is at the end or beginning of

68

Text Widgets

a line this action will move the insert point to the next (or previous)
line.

forward-word()

backward-word() These actions move the insert point to the next or previous word
boundary. A word boundary is defined as a Space, Tab or Carriage
Return.

forward-paragraph()

backward-paragraph() These actions move the insert point to the next or previous
paragraph boundary. A paragraph boundary is defined as two
Carriage Returns in a row with only Spaces or Tabs between them.

beginning-of-line()

end-of-line() These actions move to the beginning or end of the current line. If
the insert point is already at the end or beginning of the line then
no action is taken.

next-line()

previous-line() These actions move the insert point up or down one line. If the insert
point is currently N characters from the beginning of the line then
it will be N characters from the beginning of the next or previous
line. If N is past the end of the line, the insert point is placed at the
end of the line.

next-page()

previous-page() These actions move the insert point up or down one page in the file.
One page is defined as the current height of the text widget. The
insert point is always placed at the first character of the top line by
this action.

beginning-of-file()

end-of-file() These actions place the insert point at the beginning or end of the
current text buffer. The text widget is then scrolled the minimum
amount necessary to make the new insert point location visible.

scroll-one-line-up()

scroll-one-line-down() These actions scroll the current text field up or down by one line.
They do not move the insert point. Other than the scrollbars this is
the only way that the insert point may be moved off of the visible
text area. The widget will be scrolled so that the insert point is back
on the screen as soon as some other action is executed.

Delete Actions
delete-next-character()

delete-previous-character() These actions remove the character immediately before or after the
insert point. If a Carriage Return is removed then the next line is
appended to the end of the current line.

69

Text Widgets

delete-next-word()

delete-previous-word() These actions remove all characters between the insert point
location and the next word boundary. A word boundary is defined
as a Space, Tab or Carriage Return.

delete-selection() This action removes all characters in the current selection. The
selection can be set with the selection actions.

Selection Actions
select-word() This action selects the word in which the insert point is currently

located. If the insert point is between words then it will select the
previous word.

select-all() This action selects the entire text buffer.

select-start() This action sets the insert point to the current pointer location (if
triggered by a button event) or text cursor location (if triggered
by a key event). It will then begin a selection at this location. If
many of these selection actions occur quickly in succession then the
selection count mechanism will be invoked (see the section called
“Text Selections for Application Programmers” for details).

select-adjust() This action allows a selection started with the select-start action to
be modified, as described above.

select-end(name[,name,...]) This action ends a text selection that began with the select-
start action, and asserts ownership of the selection or selections
specified. A name can be a selection (e.g., PRIMARY) or a cut buffer
(e.g., CUT_BUFFER0). Note that case is important. If no names are
specified, PRIMARY is asserted.

extend-start() This action finds the nearest end of the current selection, and moves
it to the current pointer location (if triggered by a button event) or
text cursor location (if triggered by a key event).

extend-adjust() This action allows a selection started with an extend-start action to
be modified.

extend-end(name[,name,...]) This action ends a text selection that began with the extend-
start action, and asserts ownership of the selection or selections
specified. A name can be a selection (e.g. PRIMARY) or a cut buffer
(e.g CUT_BUFFER0). Note that case is important. If no names are
given, PRIMARY is asserted.

insert-selection(name[,name,...]) This action retrieves the value of the first (left-most) named
selection that exists or the cut buffer that is not empty and inserts it
into the Text widget at the current insert point location. A name can
be a selection (e.g. PRIMARY) or a cut buffer (e.g CUT_BUFFER0).
Note that case is important.

The New Line Actions
newline-and-indent() This action inserts a newline into the text and adds spaces to that

line to indent it to match the previous line.

70

Text Widgets

newline-and-backup() This action inserts a newline into the text after the insert point.

newline() This action inserts a newline into the text before the insert point.

Kill and Actions
kill-word()

backward-kill-word() These actions act exactly like the delete-next-word and delete-
previous-word actions, but they stuff the word that was killed into
the kill buffer (CUT_BUFFER_1).

kill-selection() This action deletes the current selection and stuffs the deleted text
into the kill buffer (CUT_BUFFER_1).

kill-to-end-of-line() This action deletes the entire line to the right of the insert
point position, and stuffs the deleted text into the kill buffer
(CUT_BUFFER_1).

kill-paragraph() This action deletes the current paragraph, if between paragraphs it
deletes the paragraph above the insert point, and stuffs the deleted
text into the kill buffer (CUT_BUFFER_1).

kill-to-end-of-paragraph() This action deletes everything between the current insert point
location and the next paragraph boundary, and stuffs the deleted
text into the kill buffer (CUT_BUFFER_1).

Miscellaneous Actions
redraw-display() This action recomputes the location of all the text lines on the

display, scrolls the text to vertically center the line containing the
insert point on the screen, clears the entire screen, and redisplays it.

insert-file([filename]) This action activates the insert file popup. The filename option
specifies the default filename to put in the filename buffer of the
popup. If no filename is specified the buffer is empty at startup.

insert-char() This action may only be attached to a key event. When
the international resource is false, this action calls
XLookupString to translate the event into a (rebindable) Latin-1
character (sequence) and inserts it into the text at the insert
point. When the international resource is true, characters
are passed to the input method via XwcLookupString, and any
committed string returned is inserted into the text at the insert point.

insert-string(string[,string,...]) This action inserts each string into the text at the insert point
location. Any string beginning with the characters "0x" followed
by an even number of hexadecimal digits is interpreted as a
hexadecimal constant and the corresponding string is inserted
instead. This hexadecimal string may represent up to 50 8-
bit characters. When theinternational resource is true, a
hexadecimal string is intrepeted as being in a multi-byte encoding,
and a hexadecimal or regular string will result in an error message
if it is not legal in the current locale.

71

Text Widgets

display-caret(state,when) This action allows the insert point to be turned on and off. The
state argument specifies the desired state of the insert point. This
value may be any of the string values accepted for Boolean
resources (e.g. on, True, off, False, etc.). If no arguments are
specified, the default value is True. The when argument specifies,
for EnterNotify or LeaveNotify events whether or not the
focus field in the event is to be examined. If the second argument
is not specified, or specified as something other than always then
if the action is bound to an EnterNotify or LeaveNotify
event, the action will be taken only if the focus field is True. An
augmented binding that might be useful is:

 *Text.Translations: #override \\
 <FocusIn>: display-caret(on) \\n\\
 <FocusOut>: display-caret(off)

focus-in()

focus-out() These actions do not currently do anything.

search(direction,[string]) This action activates the search popup. The direction must be
specified as either forward or backward. The string is optional
and is used as an initial value for the Search for: string. For
further explanation of the search widget see the section on Text
Searches.

multiply(value) The multiply action allows the user to multiply the effects of
many of the text actions. Thus the following action sequence
multiply(10) delete-next-word() will delete 10 words. It does not
matter whether these actions take place in one event or many events.
Using the default translations the key sequence Control-u, Control-
d will delete 4 characters. Multiply actions can be chained, thus
multiply(5) multiply(5) is the same as multiply(25). If the string
reset is passed to the multiply action the effects of all previous
multiplies are removed and a beep is sent to the display.

form-paragraph() This action removes all the Carriage Returns from the current
paragraph and reinserts them so that each line is as long as possible,
while still fitting on the current screen. Lines are broken at word
boundaries if at all possible. This action currently works only on
Text widgets that use ASCII text.

transpose-characters() This action will swap the position of the character to the left of the
insert point with the character to the right of the insert point. The
insert point will then be advanced one character.

no-op([action]) The no-op action makes no change to the text widget, and is
mainly used to override translations. This action takes one optional
argument. If this argument is RingBell then a beep is sent to the
display.

XawWMProtocols([wm_protocol_name]) This action is written specifically for the file insertion and the
search and replace dialog boxes. This action is attached to those

72

Text Widgets

shells by the Text widget, in order to handle ClientMessage
events with the WM_PROTOCOLS atom in the detail field. This
action supports WM_DELETE_WINDOW on the Text widget
popups, and may support other window manager protocols if
necessary in the future. The popup will be dismissed if the window
manager sends a WM_DELETE_WINDOW request and there
are no parameters in the action call, which is the default. The
popup will also be dismissed if the parameters include the string
“wm_delete_window,” and the event is a ClientMessage event
requesting dismissal or is not a ClientMessage event. This action is
not sensitive to the case of the strings passed as parameters.

reconnect-im() When the international resource is true, input is usually
passed to an input method, a separate process, for composing.
Sometimes the connection to this process gets severed; this action
will attempt to reconnect it. Causes for severage include network
trouble, and the user explicitly killing one input method and starting
a new one. This action may also establish first connection when the
application is started before the input method.

Text Selections for Application Programmers
The default behavior of the text selection array is described in the section called Text Selections
for Users. To modify the selections a programmer must construct a XawTextSelectType
array (called the selection array), containing the selections desired, and pass this as the new
value for the selectionTypes resource. The selection array may also be modified using
the XawTextSetSelectionArray function. All selection arrays must end with the value
XawselectNull. The selectionTypes resource has no converter registered and cannot be modified
through the resource manager.

The array contains a list of entries that will be called when the user attempts to select text in rapid succession
with the select-start action (usually by clicking a pointer button). The first entry in the selection array will
be used when the select-start action is initially called. The next entry will be used when select-start is
called again, and so on. If a timeout value (1/10 of a second) is exceeded, the the next select-start action
will begin at the top of the selection array. When XawselectNull is reached the array is recycled
beginning with the first element.

XawselectAll Selects the contents of the entire buffer.

XawselectChar Selects text characters as the
pointer moves over them.

XawselectLine Selects the entire line.

XawselectNull Indicates the end of the selection array.

XawselectParagraph Selects the entire paragraph.

XawselectPosition Selects the current pointer position.

XawselectWord Selects whole words as the
pointer moves onto them.

The default selectType array is:

{XawselectPosition, XawselectWord, XawselectLine, XawselectParagraph, XawselectAll, XawselectNull}

73

Text Widgets

The selection array is not copied by the text widgets. The application must allocate space for the array and
cannot deallocate or change it until the text widget is destroyed or until a new selection array is set.

Default Translation Bindings
 The following translations are defaults built into every Text widget. They can be overridden, or replaced
by specifying a new value for the Text widget's translations resource.

 Ctrl<Key>A: beginning-of-line() \\n\\
 Ctrl<Key>B: backward-character() \\n\\
 Ctrl<Key>D: delete-next-character() \\n\\
 Ctrl<Key>E: end-of-line() \\n\\
 Ctrl<Key>F: forward-character() \\n\\
 Ctrl<Key>G: multiply(Reset) \\n\\
 Ctrl<Key>H: delete-previous-character() \\n\\
 Ctrl<Key>J: newline-and-indent() \\n\\
 Ctrl<Key>K: kill-to-end-of-line() \\n\\
 Ctrl<Key>L: redraw-display() \\n\\
 Ctrl<Key>M: newline() \\n\\
 Ctrl<Key>N: next-line() \\n\\
 Ctrl<Key>O: newline-and-backup() \\n\\
 Ctrl<Key>P: previous-line() \\n\\
 Ctrl<Key>R: search(backward) \\n\\
 Ctrl<Key>S: search(forward) \\n\\
 Ctrl<Key>T: transpose-characters() \\n\\
 Ctrl<Key>U: multiply(4) \\n\\
 Ctrl<Key>V: next-page() \\n\\
 Ctrl<Key>W: kill-selection() \\n\\
 Ctrl<Key>Y: insert-selection(CUT_BUFFER1) \\n\\
 Ctrl<Key>Z: scroll-one-line-up() \\n\\
 Ctrl<Key>\\: reconnect-im() \\n\\
 Meta<Key>B: backward-word() \\n\\
 Meta<Key>F: forward-word() \\n\\
 Meta<Key>I: insert-file() \\n\\
 Meta<Key>K: kill-to-end-of-paragraph() \\n\\
 Meta<Key>Q: form-paragraph() \\n\\
 Meta<Key>V: previous-page() \\n\\
 Meta<Key>Y: insert-selection(PRIMARY, CUT_BUFFER0) \\n\\
 Meta<Key>Z: scroll-one-line-down() \\n\\
 :Meta<Key>d: delete-next-word() \\n\\
 :Meta<Key>D: kill-word() \\n\\
 :Meta<Key>h: delete-previous-word() \\n\\
 :Meta<Key>H: backward-kill-word() \\n\\
 :Meta<Key>\\<: beginning-of-file() \\n\\
 :Meta<Key>\\>: end-of-file() \\n\\
 :Meta<Key>]: forward-paragraph() \\n\\
 :Meta<Key>[: backward-paragraph() \\n\\
 ~Shift Meta<Key>Delete: delete-previous-word() \\n\\
 Shift Meta<Key>Delete: backward-kill-word() \\n\\
 ~Shift Meta<Key>Backspace: delete-previous-word() \\n\\

74

Text Widgets

 Shift Meta<Key>Backspace: backward-kill-word() \\n\\
 <Key>Right: forward-character() \\n\\
 <Key>Left: backward-character() \\n\\
 <Key>Down: next-line() \\n\\
 <Key>Up: previous-line() \\n\\
 <Key>Delete: delete-previous-character() \\n\\
 <Key>BackSpace: delete-previous-character() \\n\\
 <Key>Linefeed: newline-and-indent() \\n\\
 <Key>Return: newline() \\n\\
 <Key>: insert-char() \\n\\
 <Key>Kanji: reconnect-im() \\n\\
 <FocusIn>: focus-in() \\n\\
 <FocusOut>: focus-out() \\n\\
 <Btn1Down>: select-start() \\n\\
 <Btn1Motion>: extend-adjust() \\n\\
 <Btn1Up>: extend-end(PRIMARY, CUT_BUFFER0) \\n\\
 <Btn2Down>: insert-selection(PRIMARY, CUT_BUFFER0) \\n\\
 <Btn3Down>: extend-start() \\n\\
 <Btn3Motion>: extend-adjust() \\n\\
 <Btn3Up>: extend-end(PRIMARY, CUT_BUFFER0) \\n

Text Functions
The following functions are provided as convenience routines for use with the Text widget. Although many
of these actions can be performed by modifying resources, these interfaces are frequently more efficient.

These data structures are defined in the Text widget's public header file, <X11/Xaw/Text.h>.

 typedef long XawTextPosition;

Character positions in the Text widget begin at 0 and end at n, where n is the number of characters in the
Text source widget.

typedef struct {
 int firstPos;
 int length;
 char *ptr;
 unsigned long format;
} XawTextBlock, *XawTextBlockPtr;

firstPos The first position, or index, to use within the ptr field. The value is
commonly zero.

length The number of characters to be used from the ptr field. The number of
characters used is commonly the number of characters in ptr, and must
not be greater than the length of the string in ptr.

ptr Contains the string to be referenced by the Text widget.

75

Text Widgets

format This flag indicates whether the data pointed to by ptr is char or
wchar_t. When the associated widget has international set to
false this field must be XawFmt8Bit. When the associated widget has
international set to true this field must be either XawFmt8Bit or
XawFmtWide.

Note

Note: Previous versions of Xaw used FMT8BIT, which has been retained for backwards
compatibility. FMT8BIT is deprecated and will eventually be removed from the implementation.

Selecting Text
To select a piece of text, use XawTextSetSelection :

void XawTextSetSelection(w, right);

w Specifies the Text widget.

left Specifies the character position at which the selection begins.

right Specifies the character position at which the selection ends.

See section 5.4 for a description of XawTextPosition. If redisplay is enabled, this function highlights
the text and makes it the PRIMARY selection. This function does not have any effect on CUT_BUFFER0.

Unhighlighting Text
To unhighlight previously highlighted text in a widget, use XawTextUnsetSelection:

void XawTextUnsetSelection(w);

w Specifies the Text widget.

Getting Current Text Selection
To retrieve the text that has been selected by this text widget use XawTextGetSelectionPos:

void XawTextGetSelectionPos(w, *end_return);

w Specifies the Text widget.

begin_return Returns the beginning of the text selection.

end_return Returns the end of the text selection.

See section 5.4 for a description of XawTextPosition. If the returned values are equal, no text is
currently selected.

Replacing Text
To modify the text in an editable Text widget use XawTextReplace:

int XawTextReplace(w, end, *text);

76

Text Widgets

w Specifies the Text widget.

start Specifies the starting character position of the text replacement.

end Specifies the ending character position of the text replacement.

text Specifies the text to be inserted into the file.

This function will not be able to replace text in read-only text widgets. It will also only be able to append
text to an append-only text widget.

See section 5.4 for a description of XawTextPosition and XawTextBlock.

This function may return the following values:

XawEditDone The text replacement was successful.

XawPositionError The edit mode is XawtextAppend and start is not the position
of the last character of the source.

XawEditError Either the Source was read-only or the range to be deleted is larger
than the length of the Source.

The XawTextReplace arguments start and end represent the text source character positions for
the existing text that is to be replaced by the text in the text block. The characters from start up to but not
including end are deleted, and the characters specified on the text block are inserted in their place. If start
and end are equal, no text is deleted and the new text is inserted after start.

Searching for Text
To search for a string in the Text widget, use XawTextSearch:

XawTextPosition XawTextSearch(w, dir, text);

w Specifies the Text widget.

dir Specifies the direction to search in. Legal values are XawsdLeft and
XawsdRight.

text Specifies a text block structure that contains the text to search for.

See section 5.4 for a description of XawTextPosition and XawTextBlock. The XawTextSearch
function will begin at the insertion point and search in the direction specified for a string that matches the
one passed in text. If the string is found the location of the first character in the string is returned. If the
string could not be found then the value XawTextSearchError is returned.

Redisplaying Text
To redisplay a range of characters, use XawTextInvalidate:

void XawTextInvalidate(w, to);

w Specifies the Text widget.

from Specifies the start of the text to redisplay.

to Specifies the end of the text to redisplay.

77

Text Widgets

See section 5.4 for a description of XawTextPosition. The XawTextInvalidate function causes
the specified range of characters to be redisplayed immediately if redisplay is enabled or the next time
that redisplay is enabled.

To enable redisplay, use XawTextEnableRedisplay:

void XawTextEnableRedisplay(w);

w Specifies the Text widget.

The XawTextEnableRedisplay function flushes any changes due to batched updates when
XawTextDisableRedisplay was called and allows future changes to be reflected immediately.

To disable redisplay while making several changes, use XawTextDisableRedisplay.

void XawTextDisableRedisplay(w);

w Specifies the Text widget.

The XawTextDisableRedisplay function causes all changes to be batched until either
XawTextDisplay or XawTextEnableRedisplay is called.

To display batched updates, use XawTextDisplay:

void XawTextDisplay(w);

w Specifies the Text widget.

The XawTextDisplay function forces any accumulated updates to be displayed.

Resources Convenience Routines
To obtain the character position of the left-most character on the first line displayed in the widget (the
value of the displayPosition resource), use XawTextTopPosition.

XawTextPosition XawTextTopPosition(w);

w Specifies the Text widget.

To assign a new selection array to a text widget use XawTextSetSelectionArray:

void XawTextSetSelectionArray(w, sarray);

w Specifies the Text widget.

sarray Specifies a selection array as defined in the section called “Text Selections
for Application Programmers”.

Calling this function is equivalent to setting the value of the selectionTypes resource.

To move the insertion point to the specified source position, use XawTextSetInsertionPoint:

void XawTextSetInsertionPoint(w, position);

w Specifies the Text widget.

position Specifies the new position for the insertion point.

78

Text Widgets

See section 5.4 for a description of XawTextPosition. The text will be scrolled vertically if necessary
to make the line containing the insertion point visible. Calling this function is equivalent to setting the
insertPosition resource.

To obtain the current position of the insertion point, use XawTextGetInsertionPoint:

XawTextPosition XawTextGetInsertionPoint(w);

w Specifies the Text widget.

See section 5.4 for a description of XawTextPosition. The result is equivalent to retrieving the value
of the insertPosition resource.

To replace the text source in the specified widget, use XawTextSetSource:

void XawTextSetSource(w, source, position);

w Specifies the Text widget.

source Specifies the text source object.

position Specifies character position that will become the upper left hand corner
of the displayed text. This is usually set to zero.

See section 5.4 for a description of XawTextPosition. A display update will be performed if redisplay
is enabled.

To obtain the current text source for the specified widget, use XawTextGetSource:

Widget XawTextGetSource(w);

w Specifies the Text widget.

This function returns the text source that this Text widget is currently using.

To enable and disable the insertion point, use XawTextDisplayCaret:

void XawTextDisplayCaret(w, visible);

w Specifies the Text widget.

visible Specifies whether or not the caret should be displayed.

If visible is False the insertion point will be disabled. The marker is re-enabled either by setting
visible to True, by calling XtSetValues, or by executing the display-caret action routine.

Ascii Text Widget

Application Header file <X11/Xaw/AsciiText.h>

ClassHeader file <X11/Xaw/AsciiTextP.h>

Class asciiTextWidgetClass

79

Text Widgets

Class Name Text

Superclass Text
Sink Name textSink
Source Name textSource

For the ease of internationalization, the AsciiText widget class name has not been changed, although
it is actually able to support non-ASCII locales. The AsciiText widget is really a collection of smaller
parts. It includes the Text widget itself, a “Source” (which supports memory management), and a “Sink”
(which handles the display). There are currently two supported sources, the AsciiSrc and MultiSrc, and
two supported sinks, the AsciiSink and MultiSink. Some of the resources listed below are not actually
resources of the AsciiText, but belong to the associated source or sink. This is is noted in the explanation
of each resource where it applies. When specifying these resources in a resource file it is necessary to
use *AsciiText*resource_name instead of *AsciiText.resource_name, since they actually belong to the
children of the AsciiText widget, and not the AsciiText widget itself. However, these resources may be
set directly on the AsciiText widget at widget creation time, or via XtSetValues.

Resources
When creating an AsciiText widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

autoFill AutoFill Boolean False

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

bottomMargin Margin Position 2

callback Callback XtCallbackList NULL

colormap Colormap Colormap Parent's Colormap

cursor Cursor Cursor XC_xterm

cursorName Cursor String NULL

dataCompression DataCompression Boolean True

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

displayCaret Output Boolean True

displayNonprinting Output Boolean True

displayPosition TextPosition XawTextPosition 0

echo Output Boolean True

80

Text Widgets

Name Class Type Notes Default Value

editType EditType XawTextEditType XawtextRead

font Font XFontStruct* XtDefaultFont

fontSet FontSet XFontSet XtDefaultFontSet

foreground Foreground Pixel XtDefaultForeground

height Height Dimension A Font height
+ margins

insensitiveBorder Insensitive Pixmap GreyPixmap

insertPosition TextPosition int 0

international International Boolean C False

leftMargin Margin Dimension 2

length Length int A length of string

mappedWhenManagedMappedWhenManaged Boolean True

pieceSize PieceSize XawTextPosition BUFSIZ

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

resize Resize XawTextResizeMode XawtextResizeNever

rightMargin Margin Position 2

screen Screen Screen R Parent's Screen

scrollHorizontal Scroll XawTextScrollMode XawtextScrollNever

scrollVertical Scroll XawTextScrollMode XawtextScrollNever

selectTypes SelectTypes XawTextSelectType* See above

sensitive Sensitive Boolean True

string String String NULL

textSink TextSink Widget An AsciiSink

textSource TextSource Widget An AsciiSrc

topMargin Margin Position 2

translations Translations TranslationTable See above

type Type XawAsciiType XawAsciiString

useStringInPlace UseStringInPlace Boolean False

width Width Dimension 100

wrap Wrap WrapMode XawtextWrapNever

x Position Position 0

y Position Position 0

Ascii Source Object and Multi Source Object

81

Text Widgets

Application Header file <X11/Xaw/AsciiSrc.h> or <X11/Xaw/MultiSrc.h>

Class Header file <X11/Xaw/AsciiSrcP.h> or <X11/Xaw/MultiSrcP.h>

Class asciiSrcObjectClass or multiSrcObjectClass

Class Name AsciiSrc or MultiSrc

Superclass TextSource

The AsciiSrc or MultiSrc object is used by a text widget to read the text from a file or string in memory.
Depending on its international resource, an AsciiText widget will create one or the other of these
when the AsciiText itself is created. Both types are nearly identical; the following discussion applies to
both, with MultiSrc differences noted only as they occur.

The AsciiSrc understands all Latin1 characters plus Tab and Carriage Return. The MultiSrc understands
any set of character sets that the underlying X implementation's internationalization handles.

The AsciiSrc can be either of two types: XawAsciiFile or XawAsciiString.

AsciiSrc objects of type XawAsciiFile read the text from a file and store it into an internal buffer. This
buffer may then be modified, provided the text widget is in the correct edit mode, just as if it were a source
of type XawAsciiString. Unlike R3 and earlier versions of the AsciiSrc, it is now possible to specify
an editable disk source. The file is not updated, however, until a call to XawAsciiSave is made. When
the source is in this mode the useStringInPlace resource is ignored.

AsciiSrc objects of type XawAsciiString have the text buffer implemented as a string. MultiSrc objects
of type XawAsciiString have the text buffer implemented as a wide character string. The string owner
is responsible for allocating and managing storage for the string.

In the default case for AsciiSrc objects of type XawAsciiString, the resource useStringInPlace
is false, and the widget owns the string. The initial value of the string resource, and any update made by the
application programmer to the string resource with XtSetValues, is copied into memory private to the
widget, and managed internally by the widget. The application writer does not need to worry about running
out of buffer space (subject to the total memory available to the application). The performance does not
decay linearly as the buffer grows large, as is necessarily the case when the text buffer is used in place.
The application writer must use XtGetValues to determine the contents of the text buffer, which will
return a copy of the widget's text buffer as it existed at the time of the XtGetValues call. This copy is
not affected by subsequent updates to the text buffer, i.e., it is not updated as the user types input into the
text buffer. This copy is freed upon the next call to XtGetValues to retrieve the string resource; however,
to conserve memory, there is a convenience routine, XawAsciiSourceFreeString, allowing the
application programmer to direct the widget to free the copy.

When the resource useStringInPlace is true and the AsciiSrc object is of type XawAsciiString,
the application is the string owner. The widget will take the value of the string resource as its own text
buffer, and the length resource indicates the buffer size. In this case the buffer contents change as the
user types at the widget; it is not necessary to call XtGetValues on the string resource to determine the
contents of the buffer-it will simply return the address of the application's implementation of the text buffer.

Resources
When creating an AsciiSrc object instance, the following resources are retrieved from the argument list
or from the resource database:

82

Text Widgets

Name Class Type Notes Default Value

callback Callback XtCallbackList NULL

dataCompression DataCompression Boolean True

destroyCallback Callback Callback NULL

editType EditType EditMode XawtextRead

length Length Int A length of string

pieceSize PieceSize Int BUFSIZ

string String String NULL

type Type AsciiType XawAsciiString

useStringInPlace UseStringInPlace Boolean False

_

Convenience Routines
The AsciiSrc has a few convenience routines that allow the application programmer quicker or easier
access to some of the commonly used functionality of the AsciiSrc.

Conserving Memory

When the AsciiSrc widget is not in useStringInPlace mode space must be allocated whenever the
file is saved, or the string is requested with a call to XtGetValues. This memory is allocated on the
fly, and remains valid until the next time a string needs to be allocated. You may save memory by freeing
this string as soon as you are done with it by calling XawAsciiSourceFreeString.

void XawAsciiSourceFreeString(w);

w Specifies the AsciiSrc object.

This function will free the memory that contains the string pointer returned by XtGetValues. This
will normally happen automatically when the next call to XtGetValues occurs, or when the widget
is destroyed.

Saving Files

To save the changes made in the current text source into a file use XawAsciiSave.

Boolean XawAsciiSave(w);

w Specifies the AsciiSrc object.

XawAsciiSave returns True if the save was successful. It will update the file named in the string
resource. If the buffer has not been changed, no action will be taken. This function only works on an
AsciiSrc of type XawAsciiFile.

To save the contents of the current text buffer into a named file use XawAsciiSaveAsFile.

Boolean XawAsciiSaveAsFile(w, name);

w Specifies the AsciiSrc object.

83

Text Widgets

name The name of the file to save the current buffer into.

This function returns True if the save was successful. XawAsciiSaveAsFile will work with a buffer
of either type XawAsciiString or type XawAsciiFile.

Seeing if the Source has Changed

To find out if the text buffer in an AsciiSrc object has changed since the last time it was saved with
XawAsciiSave or queried use XawAsciiSourceChanged.

Boolean XawAsciiSourceChanged(w);

w Specifies the AsciiSrc object.

This function will return True if the source has changed since the last time it was saved or queried. The
internal change flag is reset whenever the string is queried via XtGetValues or the buffer is saved
via XawAsciiSave.

Ascii Sink Object and Multi Sink Object

Application Header file <X11/Xaw/AsciiSink.h>

Class Header file <X11/Xaw/AsciiSinkP.h>

Class asciiSinkObjectClass

Class Name AsciiSink

Superclass TextSink

The AsciiSink or MultiSink object is used by a text widget to render the text. Depending on its
international resource, a AsciiText widget will create one or the other of these when the AsciiText
itself is created. Both types are nearly identical; the following discussion applies to both, with MultiSink
differences noted only as they occur. The AsciiSink will display all printing characters in an 8 bit font,
along with handling Tab and Carriage Return. The name has been left as “AsciiSink” for compatibility.
The MultiSink will display all printing characters in a font set, along with handling Tab and Carriage
Return. The source object also reports the text window metrics to the text widgets.

Resources
When creating an AsciiSink object instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value

background Background Pixel XtDefaultBackground

destroyCallback Callback XtCallbackList NULL

84

Text Widgets

Name Class Type Notes Default Value

displayNonprinting Output Boolean True

echo Output Boolean True

font Font XFontStruct* XtDefaultFont

fontSet FontSet XFontSet XtDefaultFontSet

foreground Foreground Pixel XtDefaultForeground

_

This resource is retrieved by the AsciiSink instead of being copied from the Text widget.

The text font to use when displaying the string. (This resource is present in the AsciiSink, but not the
MultiSink.)

The text font set to use when displaying the string. (This resource is present in the MultiSink, but not
the AsciiSink.)

Customizing the Text Widget

The remainder of this chapter will describe customizing the Text widget. The Text widget may be
customized by subclassing, or by creating new sources and sinks. Subclassing is described in detail in
Chapter 7; this section will describe only those things that are specific to the Text widget. Attributes of
the Text widget base class and creating new sources and sinks will be discussed.

The Text widget is made up of a number of different pieces, with the Text widget as the base widget class.
It and the AsciiText widget are the only true "widgets" in the Text widget family. The other pieces (sources
and sinks) are X Toolkit objects and have no window associated with them. No source or sink is useful
unless assigned to a Text widget.

Each of the following pieces of the Text widget has a specific purpose, and will be, or has been, discussed
in detail in this chapter:

Text This is the glue that binds everything else together. This widget reads the text data from the
source, and displays the information in the sink. All translations and actions are handled
in the Text widget itself.

TextSink This object is responsible for displaying and clearing the drawing area. It also reports the
configuration of the window that contains the drawing area. The TextSink does not have
its own window; instead it does its drawing on the Text widget's window.

TextSrc This object is responsible for reading, editing and searching through the text buffer.

AsciiSink This object is a subclass of the TextSink and knows how to display ASCII text. Support
has been added to display any 8-bit character set, given the font.

MultiSink This object is a subclass of the TextSink and knows how to display font sets.

AsciiSrc This object is a subclass of the TextSrc and knows how to read strings and files.

MultiSrc This object is a subclass of the TextSrc and knows how to read strings and multibyte files,
converting them to wide characters based on locale.

85

Text Widgets

AsciiText This widget is a subclass of the Text widget. When created, the AsciiText automatically
creates and attaches either an AsciiSrc and AsciiSink, or a MultiSrc and MultiSink, to
itself. The AsciiText provides the simplest interface to the Athena Text widgets.

Text Widget

Application Header file <X11/Xaw/Text.h>
Class Header file <X11/Xaw/TextP.h>
Class textWidgetClass
Class Name Text
Superclass Simple

The Text widget is the glue that binds all the other pieces together, it maintains the internal state of the
displayed text, and acts as a mediator between the source and sink.

This section lists the resources that are actually part of the Text widget, and explains the functionality
provided by each.

Resources
When creating a Text widget instance, the following resources are retrieved from the argument list or from
the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

autoFill AutoFill Boolean False

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

bottomMargin Margin Position 2

colormap Colormap Colormap Parent's Colormap

cursor Cursor Cursor XC_xterm

cursorName Cursor String NULL

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

displayCaret Output Boolean True

displayPosition TextPosition XawTextPosition 0

height Height Dimension A Font height
+ margins

insensitiveBorder Insensitive Pixmap GreyPixmap

insertPosition TextPosition int 0

leftMargin Margin Position 2

86

Text Widgets

Name Class Type Notes Default Value

mappedWhenManagedMappedWhenManaged Boolean True

pointerColor Foreground Pixel XtDefaultForeground

pointerColorBackground Background Pixel XtDefaultBackground

resize Resize XawTextResizeMode XawtextResizeNever

rightMargin Margin Position 4

screen Screen Pointer R Parent's Screen

scrollHorizontal Scroll ScrollMode XawtextScrollNever

scrollVertical Scroll XawTextScrollMode XawtextScrollNever

selectTypes SelectTypes XawTextSelectType* See above

sensitive Sensitive Boolean True

textSink TextSink Widget NULL

textSource TextSource Widget NULL

topMargin Margin Position 2

translations Translations TranslationTable See above

unrealizeCallback Callback XtCallbackList NULL

width Width Dimension 100

wrap Wrap WrapMode XawtextWrapNever

x Position Position 0

y Position Position 0

TextSrc Object

Application Header file <X11/Xaw/TextSrc.h>
Class Header file <X11/Xaw/TextSrcP.h>
Class textSrcObjectClass
Class Name TextSrc
Superclass Object

The TextSrc object is the root object for all text sources. Any new text source objects should be subclasses
of the TextSrc Object. The TextSrc Class contains all methods the Text widget expects a text source to
export.

Since all text sources will have some resources in common the TextSrc defines a few new resources.

Resources
When creating an TextSrc object instance, the following resources are retrieved from the argument list or
from the resource database:

Name Class Type Notes Default Value

destroyCallback Callback XtCallbackList NULL

editType EditType EditMode NULL

87

Text Widgets

Subclassing the TextSrc
The only purpose of the TextSrc Object is to be subclassed. It contains the minimum set of class methods
that all text sources must have. All class methods of the TextSrc must be defined, as the Text widget
uses them all. While all may be inherited, the direct descendant of TextSrc must specify some of them
as TextSrc does not contain enough information to be a valid text source by itself. Do not try to use the
TextSrc as a valid source for the Text widget; it is not intended to be used as a source by itself and bad
things will probably happen.

Function Inherit with Public Interface must specify

Read XtInheritRead XawTextSourceRead yes

Replace XtInheritReplace XawTextSourceReplace no

Scan XtInheritScan XawTextSourceScan yes

Search XtInheritSearch XawTextSourceSearch no

SetSelection XtInheritSetSelection XawTextSourceSetSelection no

ConvertSelection XtInheritConvertSelectionXawTextSourceConvertSelection no

Reading Text.

To read the text in a text source use the Read function:

XawTextPosition Read(w, pos, *text_return, length);

w Specifies the TextSrc object.

pos Specifies the position of the first character to be read from the text buffer.

text Returns the text read from the source.

length Specifies the maximum number of characters the TextSrc should return to
the application in text_return.

This function returns the text position immediately after the characters read from the text buffer. The
function is not required to read length characters if that many characters are in the file, it may break at any
point that is convenient to the internal structure of the source. It may take several calls to Read before
the desired portion of the text buffer is fully retrieved.

Replacing Text.

To replace or edit the text in a text buffer use the Replace function:

XawTextPosition Replace(w, end, *text);

w Specifies the TextSrc object.

start Specifies the position of the first character to be removed from the text buffer. This is also the
location to begin inserting the new text.

end Specifies the position immediately after the last character to be removed from the text buffer.

text Specifies the text to be added to the text source.

This function can return any of the following values:

88

Text Widgets

XawEditDone The text replacement was successful.

XawPositionError The edit mode is XawtextAppend and start is not the last character of
the source.

XawEditError Either the Source was read-only or the range to be deleted is larger than the
length of the Source.

The Replace arguments start and end represent the text source character positions for the existing
text that is to be replaced by the text in the text block. The characters from start up to but not including
end are deleted, and the buffer specified by the text block is inserted in their place. If start and end are
equal, no text is deleted and the new text is inserted after start.

Scanning the TextSrc

To search the text source for one of the predefined boundary types use the Scan function:

XawTextPosition Scan(w, position, type, dir, count, include);

w Specifies the TextSrc object.

position Specifies the position to begin scanning the source.

type Specifies the type of boundary to scan for, may be one of: XawstPosition,
XawstWhiteSpace, XawstEOL, XawstParagraph, XawstAll. The exact meaning
of these boundaries is left up to the individual text source.

dir Specifies the direction to scan, may be either XawsdLeft to search backward, or
XawsdRight to search forward.

count Specifies the number of boundaries to scan for.

include Specifies whether the boundary itself should be included in the scan.

The Scan function returns the position in the text source of the desired boundary. It is expected to return
a valid address for all calls made to it, thus if a particular request is made that would take the text widget
beyond the end of the source it must return the position of that end.

Searching through a TextSrc

To search for a particular string use the Search function.

XawTextPosition Search(w, position, dir, *text);

w Specifies the TextSrc object.

position Specifies the position to begin the search.

dir Specifies the direction to search, may be either XawsdLeft to search backward, or
XawsdRight to search forward.

text Specifies a text block containing the text to search for.

This function will search through the text buffer attempting to find a match for the string in the text block.
If a match is found in the direction specified, then the character location of the first character in the string
is returned. If no text was found then XawTextSearchError is returned.

89

Text Widgets

Text Selections

While many selection types are handled by the Text widget, text sources may have selection types unknown
to the Text widget. When a selection conversion is requested by the X server the Text widget will first call
the ConvertSelection function, to attempt the selection conversion.

Boolean ConvertSelections(w, *type, *value_return, *length_return,
*format_return);

w Specifies the TextSrc object.

selection Specifies the type of selection that was requested (e.g. PRIMARY).

target Specifies the type of the selection that has been requested, which
indicates the desired information about the selection (e.g. Filename,
Text, Window).

type Specifies a pointer to the atom into which the property type of the
converted value of the selection is to be stored. For instance, either
file name or text might have property type XA_STRING.

value_return Returns a pointer into which a pointer to the converted value of
the selection is to be stored. The selection owner is responsible
for allocating this storage. The memory is considered owned by
the toolkit, and is freed by XtFree when the Intrinsics selection
mechanism is done with it.

length_return Returns a pointer into which the number of elements in value is to
be stored. The size of each element is determined by format.

format_return Returns a pointer into which the size in bits of the data elements of
the selection value is to be stored.

If this function returns True then the Text widget will assume that the source has taken care of converting
the selection, Otherwise the Text widget will attempt to convert the selection itself.

If the source needs to know when the text selection is modified it should define a SetSelection
procedure:

void SetSelection(w, end, selection);

w Specifies the TextSrc object.

start Specifies the character position of the beginning of the new text selection.

end Specifies the character position of the end of the new text selection.

selection Specifies the type of selection that was requested (e.g. PRIMARY).

TextSink Object

90

Text Widgets

Application Header file <X11/Xaw/TextSink.h>

Class Header file <X11/Xaw/TextSinkP.h>

Class textSinkObjectClass

Class Name TextSink

Superclass Object

The TextSink object is the root object for all text sinks. Any new text sink objects should be subclasses
of the TextSink Object. The TextSink Class contains all methods that the Text widget expects a text sink
to export.

Since all text sinks will have some resources in common, the TextSink defines a few new resources.

Resources
When creating an TextSink object instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value

background Background Pixel XtDefaultBackground

destroyCallback Callback XtCallbackList NULL

foreground Foreground Pixel XtDefaultForeground

_

Subclassing the TextSink
The only purpose of the TextSink Object is to be subclassed. It contains the minimum set of class
methods that all text sinks must have. While all may be inherited, the direct descendant of TextSink must
specify some of them as TextSink does contain enough information to be a valid text sink by itself. Do
not try to use the TextSink as a valid sink for the Text widget; it is not intended to be used as a sink by itself.

Function Inherit with Public Interface must specify

DisplayText XtInheritDisplayText XawTextSinkDisplayText yes

InsertCursor XtInheritInsertCursor XawTextSinkInsertCursor yes

ClearToBackground XtInheritClearToBackgroundXawTextSinkClearToBackground no

FindPosition XtInheritFindPosition XawTextSinkFindPosition yes

FindDistance XtInheritFindDistance XawTextSinkFindDistance yes

Resolve XtInheritResolve XawTextSinkResolve yes

MaxLines XtInheritMaxLines XawTextSinkMaxLines no

MaxHeight XtInheritMaxHeight XawTextSinkMaxHeight no

SetTabs XtInheritSetTabs XawTextSinkSetTabs no

GetCursorBounds XtInheritGetCursorBoundsXawTextSinkGetCursorBounds yes

91

Text Widgets

Displaying Text

To display a section of the text buffer contained in the text source use the function DisplayText:

void DisplayText(w, y, pos2, highlight);

w Specifies the TextSink object.

x Specifies the x location to start drawing the text.

y Specifies the y location to start drawing text.

pos1 Specifies the location within the text source of the first character to be
printed.

pos2 Specifies the location within the text source of the last character to be
printed.

highlight Specifies whether or not to paint the text region highlighted.

The Text widget will only pass one line at a time to the text sink, so this function does not need to know
how to line feed the text. It is acceptable for this function to just ignore Carriage Returns. x and y denote
the upper left hand corner of the first character to be displayed.

Displaying the Insert Point

The function that controls the display of the text cursor is InsertCursor. This function will be called
whenever the text widget desires to change the state of, or move the insert point.

void InsertCursor(w, y, state);

w Specifies the TextSink object.

x Specifies the x location of the cursor in Pixels.

y Specifies the y location of the cursor in Pixels.

state Specifies the state of the cursor, may be one of XawisOn or XawisOff.

X and y denote the upper left hand corner of the insert point.

Clearing Portions of the Text window

To clear a portion of the Text window to its background color, the Text widget will call
ClearToBackground. The TextSink object already defines this function as calling XClearArea on
the region passed. This behavior will be used if you specify XtInheritClearToBackground for
this method.

void ClearToBackground(w, y, height);

w Specifies the TextSink object.

x Specifies the x location, in pixels, of the Region to clear.

y Specifies the y location, in pixels, of the Region to clear.

width Specifies the width, in pixels, of the Region to clear.

92

Text Widgets

height Specifies the height, in pixels, of the Region to clear.

X and y denote the upper left hand corner of region to clear.

Finding a Text Position Given Pixel Values

To find the text character position that will be rendered at a given x location the Text widget uses the
function FindPosition:

void FindPosition(w, fromPos, width, stopAtWordBreak, *pos_return,
*height_return);

w Specifies the TextSink object.

fromPos Specifies a reference position, usually the first character in this line.
This character is always to the left of the desired character location.

fromX Specifies the distance that the left edge of fromPos is from the
left edge of the window. This is the reference x location for the
reference position.

width Specifies the distance, in pixels, from the reference position to the
desired character position.

stopAtWordBreak Specifies whether or not the position that is returned should be
forced to be on a word boundary.

pos_return Returns the character position that corresponds to the location that
has been specified, or the work break immediately to the left of the
position if stopAtWordBreak is True.

width_return Returns the actual distance between fromPos and pos_return.

height_return Returns the maximum height of the text between fromPos and
pos_return.

This function need make no attempt to deal with line feeds. The text widget will only call it one line at
a time.

Another means of finding a text position is provided by the Resolve function:

void Resolve(w, fromPos, width, *pos_return);

w Specifies the TextSink object.

fromPos Specifies a reference position, usually the first character in this line.
This character is always to the left of the desired character location.

fromX Specifies the distance that the left edge of fromPos is from the left
edge of the window. This is the reference x location for the reference
position.

width Specifies the distance, in pixels, from the reference position to the
desired character position.

pos_return Returns the character position that corresponds to the location that
has been specified, or the word break immediately to the left if
stopAtWordBreak is True.

93

Text Widgets

This function need make no attempt to deal with line feeds. The text widget will only call it one line at
a time. This is a more convenient interface to the FindPosition function, and provides a subset of
its functionality.

Finding the Distance Between two Text Positions

To find the distance in pixels between two text positions on the same line use the function
FindDistance.

void FindDistance(w, toPos, fromX, *pos_return, *height_return);

w Specifies the TextSink object.

fromPos Specifies the text buffer position, in characters, of the first position.

fromX Specifies the distance that the left edge of fromPos is from the
left edge of the window. This is the reference x location for the
reference position.

toPos Specifies the text buffer position, in characters, of the second
position.

resWidth Return the actual distance between fromPos and pos_return.

resPos Returns the character position that corresponds to the actual
character position used for toPos in the calculations. This may
be different than toPos, for example if fromPos and toPos are on
different lines in the file.

height_return Returns the maximum height of the text between fromPos and
pos_return.

This function need make no attempt to deal with line feeds. The Text widget will only call it one line at
a time.

Finding the Size of the Drawing area

To find the maximum number of lines that will fit into the current Text widget, use the function
MaxLines. The TextSink already defines this function to compute the maximum number of lines by
using the height of font.

int MaxLines(w, height);

w Specifies the TextSink object.

height Specifies the height of the current drawing area.

Returns the maximum number of lines that will fit in height.

To find the height required for a given number of text lines, use the function MaxHeight. The TextSink
already defines this function to compute the maximum height of the window by using the height of font.

int MaxHeight(w, lines);

w Specifies the TextSink object.

height Specifies the height of the current drawing area.

94

Text Widgets

Returns the height that will be taken up by the number of lines passed.

Setting the Tab Stops

To set the tab stops for a text sink use the SetTabs function. The TextSink already defines this function
to set the tab x location in pixels to be the number of characters times the figure width of font.

void SetTabs(w, *tabs);

w Specifies the TextSink object.

tab_count Specifies the number of tabs passed in tabs.

tabs Specifies the position, in characters, of the tab stops.

This function is responsible for the converting character positions passed to it into whatever internal
positions the TextSink uses for tab placement.

Getting the Insert Point's Size and Location

To get the size and location of the insert point use the GetCursorBounds function.

void GetCursorBounds(w, *rect_return);

w Specifies the TextSinkObject.

rect_return Returns the location and size of the insert point.

Rect will be filled with the current size and location of the insert point.

95

Chapter 6. Composite and Constraint
Widgets

These widgets may contain arbitrary widget children. They implement a policy for the size and location
of their children.

Box This widget will pack its children as tightly as possible in non-overlapping rows.

Dialog An implementation of a commonly used interaction semantic to prompt for auxiliary input
from the user, such as a filename.

Form A more sophisticated layout widget that allows the children to specify their positions relative
to the other children, or to the edges of the Form.

Paned Allows children to be tiled vertically or horizontally. Controls are also provided to allow
the user to dynamically resize the individual panes.

Porthole Allows viewing of a managed child which is as large as, or larger than its parent, typically
under control of a Panner widget.

Tree Provides geometry management of widgets arranged in a directed, acyclic graph.

Viewport Consists of a frame, one or two scrollbars, and an inner window. The inner window can
contain all the data that is to be displayed. This inner window will be clipped by the frame
with the scrollbars controlling which section of the inner window is currently visible.

Note

The geometry management semantics provided by the X Toolkit give full control of the size and
position of a widget to the parent of that widget. While the children are allowed to request a certain
size or location, it is the parent who makes the final decision. Many of the composite widgets
here will deny any geometry request from their children by default. If a child widget is not getting
the expected size or location, it is most likely the parent disallowing a request, or implementing
semantics slightly different than those expected by the application programmer.

If the application wishes to change the size or location of any widget it should make a call
to XtSetValues. This will allow the widget to ask its parent for the new size or location.
As noted above the parent is allowed to refuse this request, and the child must live with the
result. If the application is unable to achieve the desired semantics, then perhaps it should use
a different composite widget. Under no circumstances should an application programmer resort
to XtMoveWidget or XtResizeWidget; these functions are exclusively for the use of
Composite widget implementors.

For more information on geometry management consult the X Toolkit Intrinsics - C Language
Interface.

Box Widget

96

Composite and Constraint Widgets

Application Header file <X11/Xaw/Box.h>

Class Header file <X11/Xaw/BoxP.h>

Class boxWidgetClass

Class Name Box

Superclass Composite

The Box widget provides geometry management of arbitrary widgets in a box of a specified dimension.
The children are rearranged when resizing events occur either on the Box or its children, or when children
are managed or unmanaged. The Box widget always attempts to pack its children as tightly as possible
within the geometry allowed by its parent.

Box widgets are commonly used to manage a related set of buttons and are often called ButtonBox widgets,
but the children are not limited to buttons. The Box's children are arranged on a background that has its
own specified dimensions and color.

Resources
When creating a Box widget instance, the following resources are retrieved from the argument list or from
the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

children ReadOnly WidgetList R NULL

colormap Colormap Colormap Parent's Colormap

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

height Height Dimension A see Layout
Semantics

hSpace HSpace Dimension 4

mappedWhenManagedMappedWhenManaged Boolean True

numChildren ReadOnly Cardinal R 0

orientation Orientation Orientation XtorientVertical

97

Composite and Constraint Widgets

Name Class Type Notes Default Value

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

vSpace VSpace Dimension 4

translations Translations TranslationTable NULL

width Width Dimension A see Layout
Semantics

x Position Position 0

y Position Position 0

_

hSpace

vSpace The amount of space, in pixels, to leave between the children. This
resource specifies the amount of space left between the outermost
children and the edge of the box.

orientation Specifies whether the preferred shape of the box (i.e. the
result returned by the query_geometry class method) is
tall and narrow XtorientVertical or short and wide
XtorientHorizontal. When the Box is a child of a
parent which enforces width constraints, it is usually better to
specify XtorientVertical (the default). When the parent
enforces height constraints, it is usually better to specify
XtorientHorizontal.

Layout Semantics
Each time a child is managed or unmanaged, the Box widget will attempt to reposition the remaining
children to compact the box. Children are positioned in order left to right, top to bottom. The packing
algorithm used depends on the orientation of the Box.

XtorientVertical When the next child does not fit on the current row, a new row
is started. If a child is wider than the width of the box, the box
will request a larger width from its parent and will begin the layout
process from the beginning if a new width is granted.

XtorientHorizontal When the next child does not fit on the current row, the Box widens
if possible (so as to keep children on a single row); otherwise a new
row is started.

After positioning all children, the Box widget attempts to shrink its own size to the minimum dimensions
required for the layout.

Dialog Widget

98

Composite and Constraint Widgets

Application Header file <X11/Xaw/Dialog.h>

Class Header file <X11/Xaw/DialogP.h>

Class dialogWidgetClass

Class Name Dialog

Superclass Form

The Dialog widget implements a commonly used interaction semantic to prompt for auxiliary input from a
user. For example, you can use a Dialog widget when an application requires a small piece of information,
such as a filename, from the user. A Dialog widget, which is simply a special case of the Form widget,
provides a convenient way to create a preconfigured form.

The typical Dialog widget contains three areas. The first line contains a description of the function of the
Dialog widget, for example, the string Filename:. The second line contains an area into which the user
types input. The third line can contain buttons that let the user confirm or cancel the Dialog input. Any
of these areas may be omitted by the application.

Resources
When creating a Dialog widget instance, the following resources are retrieved from the argument list or
the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

children ReadOnly WidgetList R NULL

colormap Colormap Colormap Parent's Colormap

defaultDistance Thickness int 4

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

height Height Dimension A Enough space to
contain all children

icon Icon Bitmap None

label Label String "label"

mappedWhenManagedMappedWhenManaged Boolean True

numChildren ReadOnly Cardinal R 0

screen Screen Screen R Parent's Screen

99

Composite and Constraint Widgets

Name Class Type Notes Default Value

sensitive Sensitive Boolean True

translations Translations TranslationTable NULL

value Value String no value widget

width Width Dimension A Enough space to
contain all children

x Position Position 0

y Position Position 0

_

icon A pixmap image to be displayed immediately to the left of the Dialog widget's
label.

label A string to be displayed at the top of the Dialog widget.

value An initial value for the string field that the user will enter text into. By default,
no text entry field is available to the user. Specifying an initial value for
value activates the text entry field. If string input is desired, but no initial
value is to be specified then set this resource to "" (empty string).

Constraint Resources
 Each child of the Dialog widget may request special layout resources be applied to it. These constraint
resources allow the Dialog widget's children to specify individual layout requirements.

Name Class Type Notes Default Value

bottom Edge XawEdgeType XawRubber

fromHoriz Widget Widget NULL (left
edge of Dialog)

fromVert Widget Widget NULL (top
edge of Dialog)

horizDistance Thickness int defaultDistance
resource

left Edge XawEdgeType XawRubber

resizable Boolean Boolean FALSE

right Edge XawEdgeType XawRubber

top Edge XawEdgeType XawRubber

vertDistance Thickness int defaultDistance
resource

bottom
left
right
top What to do with this edge of the child when
 the parent is resized. This resource may be
 any edgeType. See Layout Semantics for
 details.

100

Composite and Constraint Widgets

fromHoriz
fromVert Which widget this child should be placed
 underneath (or to the right of). If a value
 of NULL is specified then this widget will be
 positioned relative to the edge of the par-
 ent.

horizDistance
vertDistance The amount of space, in pixels, between this
 child and its left or upper neighbor.

resizable If this resource is False then the parent
 widget will ignore all geometry request made
 by this child. The parent may still resize
 this child itself, however.

Layout Semantics
The Dialog widget uses two different sets of layout seman- tics. One is used when initially laying out the
children. The other is used when the Dialog is resized.

The first layout method uses the fromVert mand fromHoriz resources to place the children of the
Dialog. A single pass is made through the Dialog widget's children in the order that they were created. Each
child is then placed in the Dialog widget below or to the right of the widget specified by the fromVert and
fromHoriz resources. The distance the new child is placed from its left or upper neighbor is determined
by the horizDistance and vertDistance resources. This implies some things about how the order
of creation affects the possible placement of the children. The Form widget registers a string to widget
converter which does not postpone conversion and does not cache conversion results.

The second layout method is used when the Dialog is resized. It does not matter what causes this resize,
and it is possi- ble for a resize to happen before the widget becomes visible (due to constraints imposed
by the parent of the Dialog). This layout method uses the bottom , top , left , and right resources.
These resources are used to determine what will happen to each edge of the child when the Dialog is
resized. If a value of XawChain <something> is specified, the the edge of the child will remain a fixed
distance from the chain edge of the Dialog. For example if XawChainLeft mis specified for the right
mresource of a child then the right edge of that child will remain a fixed distance from the left edge of
the Dialog widget. If a value of XawRubber mis spec- ified, that edge will grow by the same percentage
that the Dialog grew. For instance if the Dialog grows by 50% the left edge of the child (if specified as
XawRubber mwill be 50% farther from the left edge of the Dialog). One must be very careful when
specifying these resources, for when they are specified incorrectly children may overlap or completely
occlude other children when the Dialog widget is resized.

Edge Type Resource Name Description

XawChainBottom ChainBottom Edge remains a fixed distance
from bottom of Dialog

XawChainLeft ChainLeft Edge remains a fixed
distance from left of Dialog

XawChainRight ChainRight Edge remains a fixed
distance from right of Dialog

XawChainTop ChainTop Edge remains a fixed
distance from top of Dialog

101

Composite and Constraint Widgets

Edge Type Resource Name Description

XawRubber Rubber Edges will move a
proportional distance

Example

If you wish to force the Dialog to never resize one or more of its children then set left and right to
XawChainLeft and top and bottom to XawChainTop. This will cause the child to remain a fixed
distance from the top and left edges of the Dialog, and to never resize.

Special Considerations

The Dialog widget automatically sets the top and bottom resources for all Children that are subclasses
of the Command widget, as well as the widget children that are used to contain the label, value, and
icon. This policy allows the buttons at the bottom of the Dialog to interact correctly with the predefined
children, and makes it possible for a client to simply create and manage a new Command button without
having to specify its constraints.

The Dialog will also set fromLeft to the last button in the Dialog for each new button added to the
Dialog widget.

The automatically added constraints cannot be overridden, as they are policy decisions of the Dialog
widget. If a more flexible Dialog is desired, the application is free to use the Form widget to create its
own Dialog policy.

Automatically Created Children.
The Dialog uses Label widgets to contain the label and icon. These widgets are named label and
icon respectively. The Dialog value is contained in an AsciiText widget whose name is value. Using
XtNameToWidget the application can change those resources associated with each of these widgets
that are not available through the Dialog widget itself.

Convenience Routines
To return the character string in the text field, use

String XawDialogGetValueString(w);

w Specifies the Dialog widget.

This function returns a copy of the value string of the Dialog widget. This string is
allocated by the AsciiText widget and will remain valid and unchanged until another call to
XawDialogGetValueString or an XtGetValues call on the value widget, when the string
will be automatically freed, and a new string is returned. This string may be freed earlier by calling the
function XawAsciiSourceFreeString.

To add a new button to the Dialog widget use XawDialogAddButton.

void XawDialogAddButton(w, name, func, client_data);

w Specifies the Dialog widget.

102

Composite and Constraint Widgets

name Specifies the name of the new Command button to be added to the
Dialog.

func Specifies a callback function to be called when this button is
activated. If NULL is specified then no callback is added.

client_data Specifies the client_data to be passed to the func.

This function is merely a shorthand for the code sequence:

{
 Widget button = XtCreateManagedWidget(name, commandWidgetClass, w, NULL, ZERO);
 XtAddCallback(button, XtNcallback, func, client_data);
}

Form Widget

Application Header file <X11/Xaw/Form.h>

Class Header file <X11/Xaw/FormP.h>

Class formWidgetClass

Class Name Form

Superclass Constraint

The Form widget can contain an arbitrary number of children or subwidgets. The Form provides
geometry management for its children, which allows individual control of the position of each child. Any
combination of children can be added to a Form. The initial positions of the children may be computed
relative to the positions of previously created children. When the Form is resized, it computes new positions
and sizes for its children. This computation is based upon information provided when a child is added
to the Form.

The default width of the Form is the minimum width needed to enclose the children after computing their
initial layout, with a margin of defaultDistance at the right and bottom edges. If a width and height
is assigned to the Form that is too small for the layout, the children will be clipped by the right and bottom
edges of the Form.

Resources
When creating a Form widget instance, the following resources are retrieved from the argument list or
from the resource database:

103

Composite and Constraint Widgets

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

children ReadOnly WidgetList R NULL

colormap Colormap Colormap Parent's Colormap

defaultDistance Thickness int 4

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

height Height Dimension A Enough space to
contain all children

mappedWhenManagedMappedWhenManaged Boolean True

numChildren ReadOnly Cardinal R 0

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

translations Translations TranslationTable NULL

width Width Dimension A Enough space to
contain all children

x Position Position 0

y Position Position 0

_

Constraint Resources
 Each child of the Form widget may request special layout resources be applied to it. These constraint
resources allow the Form widget's children to specify individual layout requirements.

Name Class Type Notes Default Value

bottom Edge XawEdgeType XawRubber

fromHoriz Widget Widget NULL (left
edge of Form)

fromVert Widget Widget NULL (top
edge of Form)

horizDistance Thickness int defaultDistance
resource

left Edge XawEdgeType XawRubber

104

Composite and Constraint Widgets

Name Class Type Notes Default Value

resizable Boolean Boolean FALSE

right Edge XawEdgeType XawRubber

top Edge XawEdgeType XawRubber

vertDistance Thickness int defaultDistance
resource

bottom
left
right
top What to do with this edge of the child when
 the parent is resized. This resource may be
 any edgeType. See Layout Semantics for
 details.

fromHoriz
fromVert Which widget this child should be placed
 underneath (or to the right of). If a value
 of NULL is specified then this widget will be
 positioned relative to the edge of the par-
 ent.

horizDistance
vertDistance The amount of space, in pixels, between this
 child and its left or upper neighbor.

resizable If this resource is False then the parent
 widget will ignore all geometry request made
 by this child. The parent may still resize
 this child itself, however.

Layout Semantics
The Form widget uses two different sets of layout semantics. One is used when initially laying out the
children. The other is used when the Form is resized.

The first layout method uses the fromVert and fromHoriz resources to place the children of the Form.
A single pass is made through the Form widget's children in the order that they were created. Each child
is then placed in the Form widget below or to the right of the widget specified by the fromVert and
fromHoriz resources. The distance the new child is placed from its left or upper neighbor is deter- mined
by the horizDistance and vertDistance resources. This implies some things about how the order
of creation affects the possible placement of the children. The Form widget registers a string to widget
converter which does not post- pone conversion and does not cache conversion results.

The second layout method is used when the Form is resized. It does not matter what causes this resize,
and it is possi- ble for a resize to happen before the widget becomes visible (due to constraints imposed by
the parent of the Form). This layout method uses the bottom, top, left, and right resources. These
resources are used to determine what will happen to each edge of the child when the Form is resized. If a
value of XawChain <something> is specified, the the edge of the child will remain a fixed distance from
the chain edge of the Form. For example if XawChainLeft is specified for the right resource of a
child then the right edge of that child will remain a fixed distance from the left edge of the Form widget.

105

Composite and Constraint Widgets

If a value of XawRubber is specified, that edge will grow by the same percentage that the Form grew.
For instance if the Form grows by 50% the left edge of the child (if specified as XawRubber will be
50% farther from the left edge of the Form). One must be very careful when specifying these resources,
for when they are specified incorrectly children may overlap or completely occlude other children when
the Form widget is resized.

Edge Type Resource Name Description

XawChainBottom ChainBottom Edge remains a fixed distance
from bottom of Form

XawChainLeft ChainLeft Edge remains a fixed
distance from left of Form

XawChainRight ChainRight Edge remains a fixed
distance from right of Form

XawChainTop ChainTop Edge remains a fixed
distance from top of Form

XawRubber Rubber Edges will move a
proportional distance

Example

If you wish to force the Form to never resize one or more of its children, then set left and right to
XawChainLeft and top and bottom to XawChainTop. This will cause the child to remain a fixed
distance from the top and left edges of the Form, and never to resize.

Convenience Routines
To force or defer a re-layout of the Form, use

void XawFormDoLayout(w, do_layout);

w Specifies the Form widget.

do_layout Specifies whether the layout of the Form widget is enabled (True) or
disabled (False).

When making several changes to the children of a Form widget after the Form has been realized, it is a
good idea to disable relayout until after all changes have been made.

Paned Widget

Application Header file <X11/Xaw/Paned.h>

Class Header file <X11/Xaw/PanedP.h>

Class panedWidgetClass

106

Composite and Constraint Widgets

Class Name Paned

Superclass Constraint

The Paned widget manages children in a vertically or horizontally tiled fashion. The panes may be
dynamically resized by the user by using the grips that appear near the right or bottom edge of the border
between two panes.

The Paned widget may accept any widget class as a pane except Grip. Grip widgets have a special
meaning for the Paned widget, and adding a Grip as its own pane will confuse the Paned widget.

Using the Paned Widget
The grips allow the panes to be resized by the user. The semantics of how these panes resize is somewhat
complicated, and warrants further explanation here. When the mouse pointer is positioned on a grip and
pressed, an arrow is displayed that indicates the pane that is to be to be resized. While keeping the mouse
button down, the user can move the grip up and down (or left and right). This, in turn, changes the size
of the pane. The size of the Paned widget will not change. Instead, it chooses another pane (or panes) to
resize. For more details on which pane it chooses to resize, see Layout Semantics.

One pointer binding allows the border between two panes to be moved, without affecting any of the other
panes. When this occurs the pointer will change to an arrow that points along the pane border.

The default bindings for the Paned widget's grips are:

Mouse button Pane to Resize - Vertical Pane to Resize - Horizontal

1 (left) above the grip left of the grip

2 (middle) adjust border adjust border

3 (right) below the grip right of the grip

_

Resources
When creating a Paned widget instance, the following resources are retrieved from the argument list or
the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

betweenCursor Cursor Cursor A Depends on
orientation

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

107

Composite and Constraint Widgets

Name Class Type Notes Default Value

children ReadOnly WidgetList R NULL

colormap Colormap Colormap Parent's Colormap

cursor Cursor Cursor None

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

gripCursor Cursor Cursor A Depends on
orientation

gripIndent GripIndent Position 10

gripTranslations Translations TranslationTable see below

height Height Dimension A Depends on
orientation

horizontalBetweenCursor Cursor Cursor sb_up_arrow

horizontalGripCursor Cursor Cursor sb_h_double_arrow

internalBorderColor BorderColor Pixel XtDefaultForeground

internalBorderWidth BorderWidth Dimension 1

leftCursor Cursor Cursor sb_left_arrow

lowerCursor Cursor Cursor sb_down_arrow

mappedWhenManagedMappedWhenManaged Boolean True

numChildren ReadOnly Cardinal R 0

orientation Orientation Orientation XtorientVertical

refigureMode Boolean Boolean True

rightCursor Cursor Cursor sb_right_arrow

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

translations Translations TranslationTable NULL

upperCursor Cursor Cursor sb_up_arrow

verticalBetweenCursor Cursor Cursor sb_left_arrow

verticalGripCursor Cursor Cursor sb_v_double_arrow

width Width Dimension A Depends on
orientation

x Paned Position 0

y Paned Position 0

_

cursor The cursor to use when the mouse pointer is over the Paned widget,
but not in any of its children (children may also inherit this cursor).
It should be noted that the internal borders are actually part of the
Paned widget, not the children.

gripCursor The cursor to use when the grips are not active. The default value
is verticalGripCursor or horizontalGripCursor
depending on the orientation of the Paned widget.

108

Composite and Constraint Widgets

gripIndent The amount of space left between the right (or bottom) edge of the
Paned widget and all the grips.

gripTranslation Translation table that will be applied to all grips.

horizontalBetweenCursor

verticalBetweenCursor The cursor to be used for the grip when changing the boundary
between two panes. These resources allow the cursors to be
different depending on the orientation of the Paned widget.

horizontalGripCursor

verticalGripCursor The cursor to be used for the grips when they are not active.
These resources allow the cursors to be different depending on the
orientation of the Paned widget.

internalBorderColor A pixel value which indexes the widget's colormap to derive the
internal border color of the widget's window. The class name of
this resource allows Paned*BorderColor: blue to set the internal
border color for the Paned widget. An optimization is invoked if
internalBorderColor and background are the same, and
the internal borders are not drawn. internalBorderWidth is
still left between the panes, however.

internalBorderWidth The width of the internal borders. This is the amount of space
left between the panes. The class name of this resource allows
Paned*BorderWidth: 3 to set the internal border width for the
Paned widget.

leftCursor

rightCursor The cursor used to indicate which is the important pane to resize
when the Paned widget is oriented horizontally.

lowerCursor

upperCursor The cursor used to indicate which is the important pane to resize
when the Paned widget is oriented vertically. This is not the same
as the number of panes, since this also contains a grip for some of
the panes, use XawPanedGetNumSub to retrieve the number of
panes.

orientation The orientation to stack the panes. This value can be either
XtorientVertical or XtorientHorizontal.

refigureMode This resource allows pane layout to be suspended. If this value is
False, then no layout actions will be taken. This may improve
efficiency when adding or removing more than one pane from the
Paned widget.

Constraint Resources
 Each child of the Paned widget may request special layout resources be applied to it. These constraint
resources allow the Paned widget's children to specify individual layout requirements.

109

Composite and Constraint Widgets

Name Class Type Notes Default Value

allowResize Boolean Boolean False

max Max Dimension Infinity

min Min Dimension Height of Grips

preferredPaneSize PreferredPaneSize Dimension ask child

resizeToPreferred Boolean Boolean False

showGrip ShowGrip Boolean True

skipAdjust Boolean Boolean False

_

allowResize If this value is False the the Paned widget will disallow all
geometry requests from this child.

max

min The absolute maximum or minimum size for this pane. These values
will never be overridden by the Paned widget. This may cause some
panes to be pushed off the bottom (or right) edge of the paned
widget.

preferredPaneSize Normally the paned widget makes a QueryGeometry call on a child
to determine the preferred size of the child's pane. There are times
when the application programmer or the user has a better idea of
the preferred size of a pane. Setting this resource causes the value
passed to be interpreted as the preferred size, in pixels, of this pane.

resizeToPreferred Determines whether or not to resize each pane to its preferred size
when the Paned widget is resized. See Layout Semantics for
details.

showGrip If True then a grip will be shown for this pane. The grip associated
with a pane is either below or to the right of the pane. No grip is
ever shown for the last pane.

skipAdjust This resource is used to determine which pane is forced to be
resized. Setting this value to True makes this pane less likely to
be forced to be resized. See Layout Semantics for details.

Layout Semantics
 In order to make effective use of the Paned widget it is helpful to know the rules it uses to determine
which child will be resized in any given situation. There are three rules used to determine which child is
resized. While these rules are always the same, the panes that are searched can change depending upon
what caused the relayout.

Layout Rules

1 Do not let a pane grow larger than its max or smaller than its min.

2 Do not adjust panes with skipAdjust set.

3 Do not adjust panes away from their preferred size, although moving one closer to
its preferred size is fine.

110

Composite and Constraint Widgets

When searching the children the Paned widget looks for panes that satisfy all the rules, and if unsuccessful
then it eliminates rule 3 and then 2. Rule 1 is always enforced.

If the relayout is due to a resize or change in management then the panes are searched from bottom to
top. If the relayout is due to grip movement then they are searched from the grip selected in the direction
opposite the pane selected.

Resizing Panes from a Grip Action

The pane above the grip is resized by invoking the GripAction with UpLeftPane specified. The panes
below the grip are each checked against all rules, then rules 2 and 1 and finally against rule 1 only. No
pane above the chosen pane will ever be resized.

The pane below the grip is resized by invoking the GripAction with LowRightPane specified. The panes
above the grip are each checked in this case. No pane below the chosen pane will ever be resized.

Invoking GripAction with ThisBorderOnly specified just moves the border between the panes. No
other panes are ever resized.

Resizing Panes after the Paned widget is resized.

When the Pane widget is resized it must determine a new size for each pane. There are two methods of
doing this. The Paned widget can either give each pane its preferred size and then resize the panes to fit, or
it can use the current sizes and then resize the panes to fit. The resizeToPreferred resource allows
the application to tell the Paned widget whether to query the child about its preferred size (subject to the
the preferredPaneSize) or to use the current size when refiguring the pane locations after the pane
has been resized.

There is one special case. All panes assume they should resize to their preferred size until the Paned widget
becomes visible to the user.

Managing Children and Geometry Management

The Paned widget always resizes its children to their preferred sizes when a new child is managed, or a
geometry management request is honored. The Paned widget will first attempt to resize itself to contain
its panes exactly. If this is not possible then it will hunt through the children, from bottom to top (right
to left), for a pane to resize.

Special Considerations

When a user resizes a pane with the grips, the Paned widget assumes that this new size is the preferred
size of the pane.

Grip Translations
The Paned widget has no action routines of its own, as all actions are handled through the grips. The grips
are each assigned a default Translation table.

 <Btn1Down>: GripAction(Start, UpLeftPane)

 <Btn2Down>: GripAction(Start, ThisBorderOnly)
 <Btn3Down>: GripAction(Start, LowRightPane)

111

Composite and Constraint Widgets

 <Btn1Motion>: GripAction(Move, UpLeftPane)
 <Btn2Motion>: GripAction(Move, ThisBorderOnly)
 <Btn3Motion>: GripAction(Move, LowRightPane)
 Any<BtnUp>: GripAction(Commit)

The Paned widget interprets the GripAction as taking two arguments. The first argument may be any
of the following:

Start Sets up the Paned widget for resizing and changes the cursor of the grip. The
second argument determines which pane will be resized, and can take on any
of the three values shown above.

Move The internal borders are drawn over the current pane locations to animate
where the borders would actually be placed if you were to move this border
as shown. The second argument must match the second argument that was
passed to the Start action, that began this process. If these arguments are
not passed, the behavior is undefined.

Commit This argument causes the Paned widget to commit the changes selected by
the previously started action. The cursor is changed back to the grip's inactive
cursor. No second argument is needed in this case.

Convenience Routines
 To enable or disable a child's request for pane resizing, use XawPanedAllowResize :

void XawPanedAllowResize(w, allow_resize);

w Specifies the child pane.

allow_resize Specifies whether or not resizing requests for this child will be
granted by the Paned widget.

If allow_resize is True, the Paned widget allows geometry requests from the child to change the pane's
height. If allow_resize is False, the Paned widget ignores geometry requests from the child to change
the pane's height. The default state is True before the Pane is realized and False after it is realized. This
procedure is equivalent to changing the allowResize constraint resource for the child.

 To change the minimum and maximum height settings for a pane, use XawPanedSetMinMax :

void XawPanedSetMinMax(w, max);

w Specifies the child pane.

min Specifies the new minimum height of the child, expressed in pixels.

max Specifies new maximum height of the child, expressed in pixels.

This procedure is equivalent to setting the min and max constraint resources for the child.

 To retrieve the minimum and maximum height settings for a pane, use XawPanedGetMinMax :

void XawPanedGetMinMax(w, *max_return);

w Specifies the child pane.

min_return Returns the minimum height of the child, expressed in pixels.

112

Composite and Constraint Widgets

max_return Returns the maximum height of the child, expressed in pixels.

This procedure is equivalent to getting the min and max resources for this child child.

 To enable or disable automatic recalculation of pane sizes and positions, use
XawPanedSetRefigureMode :

void XawPanedSetRefigureMode(w, mode);

w Specifies the Paned widget.

mode Specifies whether the layout of the Paned widget is enabled (True) or disabled
(False).

When making several changes to the children of a Paned widget after the Paned has been realized, it is a
good idea to disable relayout until after all changes have been made.

 To retrieve the number of panes in a paned widget use XawPanedGetNumSub:

int XawPanedGetNumSub(w);

w Specifies the Paned widget.

This function returns the number of panes in the Paned widget. This is not the same as the number of
children, since the grips are also children of the Paned widget.

Porthole Widget

Application Header file <X11/Xaw/Porthole.h>

Class Header file <X11/Xaw/PortholeP.h>

Class portholeWidgetClass

Class Name Porthole

Superclass Composite

The Porthole widget provides geometry management of a list of arbitrary widgets, only one of which may
be managed at any particular time. The managed child widget is reparented within the porthole and is
moved around by the application (typically under the control of a Panner widget).

Resources
When creating a Porthole widget instance, the following resources are retrieved from the argument list or
from the resource database:

113

Composite and Constraint Widgets

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

children ReadOnly WidgetList R NULL

colormap Colormap Colormap Parent's Colormap

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

height Height Dimension A see Layout
Semantics

mappedWhenManagedMappedWhenManaged Boolean True

numChildren ReadOnly Cardinal R 0

reportCallback ReportCallback Callback NULL

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

translations Translations TranslationTable NULL

width Width Dimension A see Layout
Semantics

x Position Position 0

y Position Position 0

_

reportCallback A list of functions to invoke whenever the managed child widget
changes size or position.

Layout Semantics
The Porthole widget allows its managed child to request any size that is as large or larger than the Porthole
itself and any location so long as the child still obscures all of the Porthole. This widget typically is used
with a Panner widget.

Porthole Callbacks
The functions registered on the reportCallback list are invoked whenever the managed child changes
size or position:

void ReportProc(porthole, client_data, report);

porthole Specifies the Porthole widget.

client_data Specifies the client data.

114

Composite and Constraint Widgets

report Specifies a pointer to an XawPannerReport structure containing the location and
size of the slider and the size of the canvas.

Tree Widget

Application Header file <X11/Xaw/Tree.h>
Class Header file <X11/Xaw/TreeP.h>
Class treeWidgetClass
Class Name Tree
Superclass Constraint

The Tree widget provides geometry management of arbitrary widgets arranged in a directed, acyclic graph
(i.e., a tree). The hierarchy is constructed by attaching a constraint resource called treeParent to each
widget indicating which other node in the tree should be treated as the widget's superior. The structure
of the tree is shown by laying out the nodes in the standard format for tree diagrams with lines drawn
connecting each node with its children.

The Tree sizes itself according to the needs of its children and is not intended to be resized by its parent.
Instead, it should be placed inside another composite widget (such as the Porthole or Viewport) that
can be used to scroll around in the tree.

Resources
When creating a Tree widget instance, the following resources are retrieved from the argument list or from
the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean D True

autoReconfigure AutoReconfigure Boolean False

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

children ReadOnly WidgetList R NULL

colormap Colormap Colormap Parent's Colormap

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

foreground Foreground Pixel XtDefaultForeground

gravity Gravity XtGravity WestGravity

height Height Dimension A see the section
called “Layout

Semantics”

hSpace HSpace Dimension 4

lineWidth LineWidth Dimension 0

115

Composite and Constraint Widgets

Name Class Type Notes Default Value

mappedWhenManagedMappedWhenManaged Boolean True

numChildren ReadOnly Cardinal R 0

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

vSpace VSpace Dimension 4

translations Translations TranslationTable NULL

width Width Dimension A see the section
called “Layout

Semantics”

x Position Position 0

y Position Position 0

autoReconfigure Whether or not to layout the tree every time a node is added or removed.

gravity Specifies the side of the widget from which the tree should grow. Valid
values include WestGravity, NorthGravity, EastGravity, and
SouthGravity.

hSpace

vSpace The amount of space, in pixels, to leave between the children. This resource
specifies the amount of space left between the outermost children and the edge
of the box.

lineWidth The width of the lines from nodes that do not have a treeGC constraint resource
to their children.

Constraint Resources
Each child of the Tree widget must specify its superior node in the tree. In addition, it may specify a GC
to use when drawing a line between it and its inferior nodes.

Name Class Type Notes Default Value

treeGC TreeGC GC NULL

treeParent TreeParent Widget NULL

treeGC This specifies the GC to use when drawing lines between this widget and its inferiors
in the tree. If this resource is not specified, the Tree's foreground and lineWidth
will be used.

treeParent This specifies the superior node in the tree for this widget. The default is for the node to
have no superior (and to therefore be at the top of the tree).

Layout Semantics
Each time a child is managed or unmanaged, the Tree widget will attempt to reposition the remaining
children to fix the shape of the tree if the resource is set. Children at the top (most superior) of the tree
are drawn at the side specified by the resource.

116

Composite and Constraint Widgets

After positioning all children, the Tree widget attempts to shrink its own size to the minimum dimensions
required for the layout.

Convenience Routines
The most efficient way to layout a tree is to set autoReconfigure to False and then use the
XawTreeForceLayout routine to arrange the children.

void XawTreeForceLayout(w);

w Specifies the Tree widget.

Viewport Widget

Application Header file <X11/Xaw/Viewport.h>

Class Header file <X11/Xaw/ViewportP.h>

Class viewportWidgetClass

Class Name Viewport

Superclass Form

The Viewport widget consists of a frame window, one or two Scrollbars, and an inner window. The size of
the frame window is determined by the viewing size of the data that is to be displayed and the dimensions
to which the Viewport is created. The inner window is the full size of the data that is to be displayed
and is clipped by the frame window. The Viewport widget controls the scrolling of the data directly. No
application callbacks are required for scrolling.

When the geometry of the frame window is equal in size to the inner window, or when the data does not
require scrolling, the Viewport widget automatically removes any scrollbars. The forceBars option
causes the Viewport widget to display all scrollbars permanently.

Resources
When creating a Viewport widget instance, the following resources are retrieved from the argument list
or the resource database:

Name Class Type Notes Default Value

accelerators Accelerators AcceleratorTable NULL

allowHoriz Boolean Boolean False

allowVert Boolean Boolean False

117

Composite and Constraint Widgets

Name Class Type Notes Default Value

ancestorSensitive AncestorSensitive Boolean D True

background Background Pixel XtDefaultBackground

backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderColor BorderColor Pixel XtDefaultForeground

borderPixmap Pixmap Pixmap XtUnspecifiedPixmap

borderWidth BorderWidth Dimension 1

children ReadOnly WidgetList R NULL

colormap Colormap Colormap Parent's Colormap

depth Depth int C Parent's Depth

destroyCallback Callback XtCallbackList NULL

forceBars Boolean Boolean False

height Height Dimension height of the child

mappedWhenManagedMappedWhenManaged Boolean True

numChildren ReadOnly Cardinal R 0

reportCallback ReportCallback XtCallbackList NULL

screen Screen Screen R Parent's Screen

sensitive Sensitive Boolean True

translations Translations TranslationTable NULL

useBottom Boolean Boolean False

useRight Boolean Boolean False

width Width Dimension width of the child

x Position Position 0

y Position Position 0

_

allowHoriz

allowVert If these resources are False then the Viewport will never create a
scrollbar in this direction. If it is True then the scrollbar will only
appear when it is needed, unless forceBars is True.

forceBars When True the scrollbars that have been allowed will always be
visible on the screen. If False the scrollbars will be visible only
when the inner window is larger than the frame.

reportCallback These callbacks will be executed whenever the Viewport adjusts
the viewed area of the child. The call_data parameter is a pointer to
an XawPannerReport structure.

useBottom

useRight By default the scrollbars appear on the left and top of the screen.
These resources allow the vertical scrollbar to be placed on the right
edge of the Viewport, and the horizontal scrollbar on the bottom
edge of the Viewport.

118

Composite and Constraint Widgets

Layout Semantics
 The Viewport widget manages a single child widget. When the size of the child is larger than the size of
the Viewport, the user can interactively move the child within the Viewport by repositioning the scrollbars.

The default size of the Viewport before it is realized is the width and/or height of the child. After
it is realized, the Viewport will allow its child to grow vertically or horizontally if allowVert or
allowHoriz are set, respectively. If the corresponding vertical or horizontal scrollbar is not enabled,
the Viewport will propagate the geometry request to its own parent and the child will be allowed to change
size only if the Viewport's parent allows it. Regardless of whether or not scrollbars are enabled in the
corresponding direction, if the child requests a new size smaller than the Viewport size, the change will
be allowed only if the parent of the Viewport allows the Viewport to shrink to the appropriate dimension.

The scrollbar children of the Viewport are named horizontal and vertical. By using these names
the programmer can specify resources for the individual scrollbars. XtSetValues can be used to
modify the resources dynamically once the widget ID has been obtained with XtNameToWidget.

Note

Although the Viewport is a Subclass of the Form, no resources for the Form may be supplied for
any of the children of the Viewport. These constraints are managed internally and are not meant
for public consumption.

119

Chapter 7. Creating New Widgets
(Subclassing)

Although the task of creating a new widget may at first appear a little daunting, there is a basic simple
pattern that all widgets follow. The Athena Widget library contains a special widget called the Template
widget that is intended to assist the novice widget programmer in writing a custom widget.

Reasons for wishing to write a custom widget include:

• Providing a graphical interface not currently supported by any existing widget set.

• Convenient access to resource management procedures to obtain fonts, colors, etc., even if user
customization is not desired.

• Convenient access to user input dispatch and translation management procedures.

• Access to callback mechanism for building higher-level application libraries.

• Customizing the interface or behavior of an existing widget to suit a special application need.

• Desire to allow user customization of resources such as fonts, colors, etc., or to allow convenient re-
binding of keys and buttons to internal functions.

• Converting a non-Toolkit application to use the Toolkit.

In each of these cases, the operation needed to create a new widget is to "subclass" an existing one. If the
desired semantics of the new widget are similar to an existing one, then the implementation of the existing
widget should be examined to see how much work would be required to create a subclass that will then be
able to share the existing class methods. Much time will be saved in writing the new widget if an existing
widget class Expose, Resize and/or GeometryManager method can be used by the subclass.

Note that some trivial uses of a “bare-bones” widget may be achieved by simply creating an instance of
the Core widget. The class variable to use when creating a Core widget is widgetClass. The geometry
of the Core widget is determined entirely by the parent widget.

It is very often the case than an application will have a special need for a certain set of functions and that
many copies of these functions will be needed. For example, when converting an older application to use
the Toolkit, it may be desirable to have a "Window Widget" class that might have the following semantics:

• Allocate 2 drawing colors in addition to a background color.

• Allocate a text font.

• Execute an application-supplied function to handle exposure events.

• Execute an application-supplied function to handle user input events.

It is obvious that a completely general-purpose WindowWidgetClass could be constructed that would
export all class methods as callbacks lists, but such a widget would be very large and would have to choose
some arbitrary number of resources such as colors to allocate. An application that used many instances of
the general-purpose widget would therefore un-necessarily waste many resources.

In this section, an outline will be given of the procedure to follow to construct a special-purpose widget to
address the items listed above. The reader should refer to the appropriate sections of the X Toolkit Intrinsics

120

Creating New Widgets (Subclassing)

- C Language Interface for complete details of the material outlined here. Section 1.4 of the Intrinsics
should be read in conjunction with this section.

All Athena widgets have three separate files associated with them:

• A "public" header file containing declarations needed by applications programmers

• A "private" header file containing additional declarations needed by the widget and any subclasses

• A source code file containing the implementation of the widget

This separation of functions into three files is suggested for all widgets, but nothing in the Toolkit actually
requires this format. In particular, a private widget created for a single application may easily combine the
"public" and "private" header files into a single file, or merge the contents into another application header
file. Similarly, the widget implementation can be merged into other application code.

In the following example, the public header file <X11/Xaw/Template.h>, the private header file
<X11/Xaw/TemplateP.h> and the source code file <X11/Xaw/Template.c> will be modified to
produce the "WindowWidget" described above. In each case, the files have been designed so that a global
string replacement of "Template" and "template" with the name of your new widget, using the appropriate
case, can be done.

Public Header File
The public header file contains declarations that will be required by any application module that needs to
refer to the widget; whether to create an instance of the class, to perform an XtSetValues operation,
or to call a public routine implemented by the widget class.

The contents of the Template public header file, <X11/Xaw/Template.h>, are:

..

/* Copyright (c) X Consortium 1987, 1988 */

#ifndef _Template_h
#define _Template_h

/**
 *
 * Template widget
 *
 **/

/* Resources:

 Name Class RepType Default Value
 ---- ----- ------- -------------
 background Background Pixel XtDefaultBackground
 border BorderColor Pixel XtDefaultForeground
 borderWidth BorderWidth Dimension 1
 destroyCallback Callback Pointer NULL
 height Height Dimension 0

121

Creating New Widgets (Subclassing)

 mappedWhenManaged MappedWhenManaged Boolean True
 sensitive Sensitive Boolean True
 width Width Dimension 0
 x Position Position 0
 y Position Position 0

*/

/* define any special resource names here that are not in <X11/StringDefs.h> */

#define XtNtemplateResource "templateResource"

#define XtCTemplateResource "TemplateResource"

/* declare specific TemplateWidget class and instance datatypes */

typedef struct _TemplateClassRec* TemplateWidgetClass;
typedef struct _TemplateRec* TemplateWidget;

/* declare the class constant */

extern WidgetClass templateWidgetClass;

#endif /* _Template_h */

You will notice that most of this file is documentation. The crucial parts are the last 8 lines where macros
for any private resource names and classes are defined and where the widget class datatypes and class
record pointer are declared.

For the "WindowWidget", we want 2 drawing colors, a callback list for user input and an
exposeCallback callback list, and we will declare three convenience procedures, so we need to add

/* Resources:
 ...
 callback Callback Callback NULL
 drawingColor1 Color Pixel XtDefaultForeground
 drawingColor2 Color Pixel XtDefaultForeground
 exposeCallback Callback Callback NULL
 font Font XFontStruct* XtDefaultFont
 ...
 */

#define XtNdrawingColor1 "drawingColor1"
#define XtNdrawingColor2 "drawingColor2"
#define XtNexposeCallback "exposeCallback"

extern Pixel WindowColor1(/* Widget */);
extern Pixel WindowColor2(/* Widget */);
extern Font WindowFont(/* Widget */);

122

Creating New Widgets (Subclassing)

Note that we have chosen to call the input callback list by the generic name, callback, rather than a
specific name. If widgets that define a single user-input action all choose the same resource name then
there is greater possibility for an application to switch between widgets of different types.

Private Header File
The private header file contains the complete declaration of the class and instance structures for the widget
and any additional private data that will be required by anticipated subclasses of the widget. Information in
the private header file is normally hidden from the application and is designed to be accessed only through
other public procedures; e.g. XtSetValues.

The contents of the Template private header file, <X11/Xaw/TemplateP.h>, are:

/* Copyright (c) X Consortium 1987, 1988
 */

#ifndef _TemplateP_h
#define _TemplateP_h

#include <X11/Xaw/Template.h>
/* include superclass private header file */
#include <X11/CoreP.h>

/* define unique representation types not found in <X11/StringDefs.h> */

#define XtRTemplateResource "TemplateResource"

typedef struct {
 int empty;
} TemplateClassPart;

typedef struct _TemplateClassRec {
 CoreClassPart core_class;
 TemplateClassPart template_class;
} TemplateClassRec;

extern TemplateClassRec templateClassRec;

typedef struct {
 /* resources */
 char* resource;
 /* private state */
} TemplatePart;

typedef struct _TemplateRec {
 CorePart core;
 TemplatePart template;
} TemplateRec;

#endif /* _TemplateP_h */

123

Creating New Widgets (Subclassing)

The private header file includes the private header file of its superclass, thereby exposing the entire internal
structure of the widget. It may not always be advantageous to do this; your own project development style
will dictate the appropriate level of detail to expose in each module.

The "WindowWidget" needs to declare two fields in its instance structure to hold the drawing colors, a
resource field for the font and a field for the expose and user input callback lists:

typedef struct {
 /* resources */
 Pixel color_1;
 Pixel color_2;
 XFontStruct* font;
 XtCallbackList expose_callback;
 XtCallbackList input_callback;
 /* private state */
 /* (none) */
} WindowPart;

Widget Source File
The source code file implements the widget class itself. The unique part of this file is the declaration and
initialization of the widget class record structure and the declaration of all resources and action routines
added by the widget class.

The contents of the Template implementation file, <X11/Xaw/Template.c>, are:

/* Copyright (c) X Consortium 1987, 1988
 */

#include <X11/IntrinsicP.h>
#include <X11/StringDefs.h>
#include "TemplateP.h"

static XtResource resources[] = {
#define offset(field) XtOffsetOf(TemplateRec, template.field)
 /* {name, class, type, size, offset, default_type, default_addr}, */
 { XtNtemplateResource, XtCTemplateResource, XtRTemplateResource,
 sizeof(char*), offset(resource), XtRString, (XtPointer) "default" },
#undef offset
};

static void TemplateAction(/* Widget, XEvent*, String*, Cardinal* */);

static XtActionsRec actions[] =
{
 /* {name, procedure}, */
 {"template", TemplateAction},
};

static char translations[] =

124

Creating New Widgets (Subclassing)

" <Key>: template() \\n\\
";

TemplateClassRec templateClassRec = {
 { /* core fields */
 /* superclass */ (WidgetClass) &widgetClassRec,
 /* class_name */ "Template",
 /* widget_size */ sizeof(TemplateRec),
 /* class_initialize */ NULL,
 /* class_part_initialize */ NULL,
 /* class_inited */ FALSE,
 /* initialize */ NULL,
 /* initialize_hook */ NULL,
 /* realize */ XtInheritRealize,
 /* actions */ actions,
 /* num_actions */ XtNumber(actions),
 /* resources */ resources,
 /* num_resources */ XtNumber(resources),
 /* xrm_class */ NULLQUARK,
 /* compress_motion */ TRUE,
 /* compress_exposure */ TRUE,
 /* compress_enterleave */ TRUE,
 /* visible_interest */ FALSE,
 /* destroy */ NULL,
 /* resize */ NULL,
 /* expose */ NULL,
 /* set_values */ NULL,
 /* set_values_hook */ NULL,
 /* set_values_almost */ XtInheritSetValuesAlmost,
 /* get_values_hook */ NULL,
 /* accept_focus */ NULL,
 /* version */ XtVersion,
 /* callback_private */ NULL,
 /* tm_table */ translations,
 /* query_geometry */ XtInheritQueryGeometry,
 /* display_accelerator */ XtInheritDisplayAccelerator,
 /* extension */ NULL
 },
 { /* template fields */
 /* empty */ 0
 }
};

WidgetClass templateWidgetClass = (WidgetClass)&templateClassRec;

The resource list for the "WindowWidget" might look like the following:

static XtResource resources[] = {
#define offset(field) XtOffsetOf(WindowWidgetRec, window.field)
 /* {name, class, type, size, offset, default_type, default_addr}, */
 { XtNdrawingColor1, XtCColor, XtRPixel, sizeof(Pixel),
 offset(color_1), XtRString, XtDefaultForeground },
 { XtNdrawingColor2, XtCColor, XtRPixel, sizeof(Pixel),

125

Creating New Widgets (Subclassing)

 offset(color_2), XtRString, XtDefaultForeground },
 { XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),
 offset(font), XtRString, XtDefaultFont },
 { XtNexposeCallback, XtCCallback, XtRCallback, sizeof(XtCallbackList),
 offset(expose_callback), XtRCallback, NULL },
 { XtNcallback, XtCCallback, XtRCallback, sizeof(XtCallbackList),
 offset(input_callback), XtRCallback, NULL },
#undef offset
};

The user input callback will be implemented by an action procedure which passes the event pointer as
call_data. The action procedure is declared as:

/* ARGSUSED */
static void InputAction(w, event, params, num_params)
 Widget w;
 XEvent *event;
 String *params; /* unused */
 Cardinal *num_params; /* unused */
{
 XtCallCallbacks(w, XtNcallback, (XtPointer)event);
}

static XtActionsRec actions[] =
{
 /* {name, procedure}, */
 {"input", InputAction},
};

and the default input binding will be to execute the input callbacks on KeyPress and ButtonPress :

static char translations[] =
" <Key>: input() \\n\\
 <BtnDown>: input() \\
";

In the class record declaration and initialization, the only field that is different from the Template is the
expose procedure:

/* ARGSUSED */
static void Redisplay(w, event, region)
 Widget w;
 XEvent *event; /* unused */
 Region region;
{
 XtCallCallbacks(w, XtNexposeCallback, (XtPointer)region);
}

WindowClassRec windowClassRec = {

 ...

126

Creating New Widgets (Subclassing)

 /* expose */ Redisplay,

The "WindowWidget" will also declare three public procedures to return the drawing colors and the font
id, saving the application the effort of constructing an argument list for a call to XtGetValues :

Pixel WindowColor1(w)
 Widget w;
{
 return ((WindowWidget)w)->window.color_1;
}

Pixel WindowColor2(w)
 Widget w;
{
 return ((WindowWidget)w)->window.color_2;
}

Font WindowFont(w)
 Widget w;
{
 return ((WindowWidget)w)->window.font->fid;
}

The "WindowWidget" is now complete. The application can retrieve the two drawing colors from the
widget instance by calling either XtGetValues, or the WindowColor functions. The actual window
created for the "WindowWidget" is available by calling the XtWindow function.

127

Chapter 8. Acknowledgments
Many thanks go to Ralph Swick (Project Athena / Digital) who has contributed much time and effort to
this widget set. Previous versions of the widget set are largely due to his time and effort. Many of the
improvements that I have been able to make are because he provided a solid foundation to build upon.
While much of the effort has been Ralph's, many other people have contributed to the code.

Mark Ackerman (formerly Project Athena)
Donna Converse (MIT X Consortium)
Jim Fulton (formerly MIT X Consortium)
Loretta Guarino-Reid (Digital WSL)
Charles Haynes (Digital WSL)
Rich Hyde (Digital WSL)
Mary Larson (Digital UEG)
Joel McCormack (Digital WSL)
Ron Newman (formerly Project Athena)
Jeanne Rich (Digital WSL)
Terry Weissman (formerly Digital WSL)

While not much remains of the X10 toolkit, many of the ideas for this widget set come from that original
version. The design and implementation of the X10 toolkit were done by:

Mike Gancarz (formerly Digital UEG)
Charles Haynes (Digital WSL)
Phil Karlton (formerly Digital WSL)
Kathleen Langone (Digital UEG)
Mary Larson (Digital UEG)
Ram Rao (Digital UEG)
Smokey Wallace (formerly Digital WSL)
Terry Weissman (formerly Digital WSL)

I have used the formatting ideas, and some of the words from previous versions of this document. The
X11R3 Athena widget document was written by:

Ralph R. Swick (Project Athena/ Digital)
Terry Weissman (formerly Digital WSL)
Al Mento (Digital UEG)

Putting this manual together was a major task in and of itself. I would like to thank Ralph Swick, Donna
Converse, and Jim Fulton for taking the time to help convert my technical knowledge into legible text. A
special thanks to Jean Diaz (O'Reilly and Associates) for spending nearly a month with me working out
all the annoying little details.

Chris D. Peterson
MIT X Consortium 1989

The R5 edition of this document has been edited by the research staff of the MIT X Consortium, with
significant contributions by Jim Fulton (NCD).

128

Acknowledgments

Donna Converse
MIT X Consortium 1991

The R6 edition of this document has been edited to reflect changes brought about by research staff of the
Omron Corporation, with special recognition to Li Yuhong, Seiji Kuwari, and Hiroshi Kuribayashi for the
X11R5/contrib/lib/Xaw internationalization that inspired this version.

Frank Sheeran
Omron Corporation 1994

This document is made available to you in modern formats such as HTML and PDF thanks to the efforts of
Matt Dew, who converted the original troff sources to DocBook/XML and edited them into shape; along
with Gaetan Nadon and Alan Coopersmith, who set up the formatting machinery in the libXaw builds and
performed further editing of the DocBook markup.

129

Index
Symbols
/usr/include/X11/bitmaps, 10
/usr/share/X11/app-defaults, 15
_in_out, 3
_return, 3

A
A, note, 5
app-defaults, 15
application defaults, 15
application header file, 4
application programmer, 2
Arg, 16
ArgList, 16
argument lists, 16
AsciiSink object, 80, 84, 85

class name, 84
resources, 84, 91

AsciiSink.h, 84
asciiSinkObjectClass, 84
AsciiSinkP.h, 84
AsciiSrc object, 80, 81, 85

class name, 82
resources, 83

AsciiSrc.h, 82
asciiSrcObjectClass, 82
AsciiSrcP.h, 82
AsciiText widget, 79, 86

class name, 80
resources, 80

AsciiText.h, 79
AsciiTextP.h, 79
asciiTextWidgetClass, 80

B
bitmap conversions, 10
bitmapFilePath, 10
BitmapFilePath, 10
Box widget, 96

class name, 97
layout semantics, 98
resources, 97

Box.h, 97
BoxP.h, 97
boxWidgetClass, 97

C
C, note, 5
CallbackProc, 12

callbacks, 12
chapter format, 4
child, 2
class, 2, 4
class header file, 4
class name, 4
client, 2
Command widget, 19

actions, 21
class name, 19
resources, 20
translation bindings, 21

Command.h, 19
CommandP.h, 19
commandWidgetClass, 19
compiling applications, 14
conventions

chapter format, 4
used in manual, 3

conversions, 9
BackingStore, 53
Bitmap, 10
ColorCursor, 9
Cursor, 9
Orientation, 98, 109
Pixel, 9

creating widgets, 7
cursor, 9

D
D, note, 5
destroyCallback, 13
Dialog widget, 98

automatically created children, 102
class name, 99
constraint resources, 100
layout semantics, 101
resources, 99
special considerations, 102

Dialog.h, 99
DialogP.h, 99
dialogWidgetClass, 99

E
events, 10
examples, 18

F
fallback resources, 6
FindPosition, 94
float resources

setting, 42
Form widget, 103

130

Index

class name, 103
constraint resources, 104
re-layout, 106
resources, 104

Form.h, 103
FormP.h, 103
formWidgetClass, 103
fromLeft, 102
FullName, 2

G
Grip widget, 22

actions, 23
class name, 22
GripAction routine, 23
GripAction table, 24
resources, 22

Grip.h, 22
GripAction, 111, 112
GripCallData, 24
GripP.h, 22
gripWidgetClass, 22

I
initialization, 6
input, 5
input focus, 5
Input Method, 73
instance, 2
internationalization, 6
Intrinsic.h, 13
introduction, 1

J
jumpProc, 41

L
Label widget, 24

class name, 24
resources, 25

Label.h, 24
LabelP.h, 24
labelWidgetClass, 24
libICE, 14
libSM, 14
libX11, 14
libXaw, 14
libXext, 14
libXmu, 14
libXt, 14
linking applications, 14
List widget, 26

actions, 28

callbacks, 29
class name, 26
default translation table, 29
resources, 26

List.h, 26
ListP.h, 26
listWidgetClass, 26
locale, 6

M
MenuButton widget, 60

actions, 62
class name, 60
resources, 61

MenuButton.h, 60
MenuButtonP.h, 60
menuButtonWidgetClass, 60
Menus

popup, 51
pulldown, 51
using, 51

method, 2
MultiSink object, 80, 85
MultiSrc object, 80, 85

N
name

widget, 2
notes, 5

O
object, 2

P
Paned widget, 106

change height settings, 112
class name, 107
constraint resources, 109
disable auto-reconfiguring, 113
disable pane resizing, 112
enable auto-reconfiguring, 113
enable pane resizing, 112
get height settings, 112
getting the number of children, 113
layout semantics, 110
resources, 107
using, 107

Paned.h, 106
PanedP.h, 106
panedWidgetClass, 106
Panner widget, 31

actions, 33
callbacks, 34

131

Index

class name, 31
default translation table, 34
resources, 31

Panner.h, 31
PannerP.h, 31
pannerWidgetClass, 31
parent, 2
pixel, 9
Porthole widget, 113

callbacks, 114
class name, 113
layout semantics, 114
resources, 113

Porthole.h, 113
PortholeP.h, 113
portholeWidgetClass, 113

R
R, note, 5
Radio groups

zero or one of many, 49
realizing widgets, 10
Repeater widget, 34

actions, 37
class name, 35
resources, 35
translation bindings, 37

Repeater.h, 34
RepeaterP.h, 35
repeaterWidgetClass, 35
ReportProc, 34, 114
resource, 2, 8, 14
rgb.txt, 9

S
Scrollbar widget

callbacks, 41
default translation table, 40
setting thumb values, 41

ScrollProc, 41
Simple widget, 42

class name, 42
resources, 43

Simple.h, 42
SimpleMenP.h, 52
SimpleMenu widget, 51

actions, 54
class name, 52
default translations, 54
MenuPopdown routine, 54, 55
positioning, 55
resources, 52

SimpleMenu.h, 51

simpleMenuWidgetClass, 52
SimpleP.h, 42
simpleWidgetClass, 42
Sme object, 59

class name, 59
Highlight method, 60
Notify method, 60
subclassing, 59
Unhighlight method, 60

Sme.h, 59
SmeBSB object, 56

class name, 56
resources, 56

SmeBSB.h, 56
smeBSBObjectClass, 56
SmeBSBP.h, 56
SmeLine object, 58

class name, 58
resources, 58, 59

SmeLine.h, 58
smeLineObjectClass, 58
SmeLineP.h, 58
smeObjectClass, 59
SmeP.h, 59
string conversions, 9
StringDefs.h, 13
StripCharP.h, 43
StripChart widget, 43

class name, 44
getting the value, 45
getValue callback, 45
resources, 44

StripChart.h, 43
stripChartWidgetClass, 44
superclass, 2, 4

T
Text widget, 85

actions, 68, 68
customizing, 85
default key bindings, 64
default translations, 74
file insertion, 67
query replace, 65
search, 65
Text Selections for Application Programmers, 73
Text Selections for Users, 67
User's Guide to the Text widget, 64

TextSink object, 85, 90
class name, 91
ClearToBackground, 92
DisplayText, 92
FindDistance, 94

132

Index

FindPosition, 93
GetCursorBounds, 95
MaxHeight, 94
MaxLines, 94
Resolve, 93
SetTabs, 95
subclassing, 91

TextSink.h, 91
textSinkObjectClass, 91
TextSinkP.h, 91
TextSrc object, 85

Read, 88
toolkit initialization, 6
type conversions, 9

U
underlying model, 3
user, 2

V
Viewport widget, 117

class name, 117
layout semantics, 119
resources, 117

Viewport.h, 117
ViewportP.h, 117
viewportWidgetClass, 117

W
widget, 3
widget class, 3
widget creation, 7
widget programmer, 3
writing applications, 13

X
XawAsciiSave, 84
XawAsciiSourceFreeString, 102
XawDialogAddButton, 102
XawDialogGetValueString, 102
XawEditDone, 77
XawEditError, 77, 89
XawFormDoLayout, 106
XawGripCallData, 24, 24
XawGripCallDataRec, 24, 24
XawListChange, 29
XawListHighlight, 30
XawListReturnStruct, 29, 29
XawListShowCurrent, 30
XawListUnhighlight, 30
XawPanedAllowResize, 112
XawPanedGetMinMax, 112
XawPanedGetNumSub, 113

XawPanedSetMinMax, 112
XawPanedSetRefigureMode, 113
XawPositionError, 77, 89
XawPositionSimpleMenu, 55, 55
XawScrollbarSetThumb, 41
XawsdLeft, 89, 89
XawsdRight, 89, 89
XawSimpleMenuAddGlobalActions, 55
XawSimpleMenuClearActiveEntry, 56
XawSimpleMenuGetActiveEntry, 56
XawTextBlock, 75
XawTextBlockPtr, 75
XawTextDisableRedisplay, 78
XawTextDisplay, 78
XawTextDisplayCaret, 79
XawTextEnableRedisplay, 78
XawTextGetInsertionPoint, 79
XawTextGetSelectionPos, 76
XawTextGetSource, 79
XawTextInvalidate, 77
XawTextPosition, 75
XawTextReplace, 76
XawTextSearch, 77
XawTextSetInsertionPoint, 78
XawTextSetSelection, 76
XawTextSetSelectionArray, 73, 78
XawTextSetSource, 79
XawTextTopPosition, 78
XawTextUnsetSelection, 76
XawWMProtocols, 72
XAW_LIST_NONE, 30
xrdb, 15
XtAddCallback, 13, 13, 14
XtAddCallbacks, 13
XtAppInitialize, 10
XtAppMainLoop, 10, 14
XtCallbackList, 13
XtCallbackProc, 13
XtCallbackRec, 13
XtCreateManagedWidget, 7, 14
XtCreateWidget, 11, 13
XtDefaultBackground, 8, 9
XtDefaultForeground, 8, 9, 9
XtDestroyWidget, 11
XtError, 8
XtGetApplicationResources, 16
XtGetValues, 12, 12
XtInheritClearToBackground, 92
XtManageChildren, 11
XtMapWidget, 11, 11
XtMoveWidget, 96
XtN, 14
XtNameToWidget, 102, 119
XtNinput, 5

133

Index

XtNumber, 17, 17, 18, 18
XtOpenApplication, 6, 14
XtorientHorizontal, 98, 98, 109
XtorientVertical, 98, 98, 109
XtRealizeWidget, 7, 10, 11, 14
XtResizeWidget, 96
XtSetArg, 17
XtSetLanguageProc, 6
XtSetMappedWhenManaged, 11
XtSetValues, 12, 12, 96

134

	Athena Widget Set - C Language Interface
	Table of Contents
	Chapter 1. Athena Widgets and The Intrinsics
	Introduction to the X Toolkit
	Terminology
	Underlying Model
	Conventions Used in this Manual
	Format of the Widget Reference Chapters
	Input Focus

	Chapter 2. Using Widgets
	Using Widgets
	Setting the Locale
	Initializing the Toolkit
	Creating a Widget
	Common Resources
	Resource Conversions
	Cursor Conversion
	Pixel Conversion
	Bitmap Conversion

	Realizing a Widget
	Processing Events
	Standard Widget Manipulation Functions
	Mapping Widgets
	Destroying Widgets
	Retrieving Widget Resource Values
	Modifying Widget Resource Values

	Using the Client Callback Interface
	Programming Considerations
	Writing Applications
	Changing Resource Values
	Specifying Resources
	Creating Argument Lists

	Example Programs

	Chapter 3. Simple Widgets
	Command Widget
	Resources
	Command Actions

	Grip Widget
	Resources
	Grip Actions

	Label Widget
	Resources

	List Widget
	Resources
	List Actions
	List Callbacks
	Changing the List
	Highlighting an Item
	Unhighlighting an Item
	Retrieving the Currently Selected Item
	Restrictions

	Panner Widget
	Resources
	Panner Actions
	Panner Callbacks

	Repeater Widget
	Resources
	Repeater Actions

	Scrollbar Widget
	Resources
	Scrollbar Actions
	Scrollbar Callbacks
	Convenience Routines
	Setting Float Resources

	Simple Widget
	Resources

	StripChart Widget
	Resources
	Getting the StripChart Value

	Toggle Widget
	Resources
	Toggle Actions
	Toggle Actions
	Radio Groups
	Convenience Routines
	Changing the Toggle's Radio Group.

	Chapter 4. Menus
	Using the Menus
	SimpleMenu Widget
	Resources
	SimpleMenu Actions
	Positioning the SimpleMenu
	Convenience Routines
	Registering the Global Action Routines
	Getting and Clearing the Current Menu Entry

	SmeBSB Object
	Resources

	SmeLine Object
	Resources

	Sme Object
	Resources
	Subclassing the Sme Object

	MenuButton Widget
	Resources
	MenuButton Actions
	MenuButton Actions

	Chapter 5. Text Widgets
	Text Widget for Users
	Default Key Bindings
	Search and Replace
	File Insertion
	Text Selections for Users

	Text Widget Actions
	Cursor Movement Actions
	Delete Actions
	Selection Actions
	The New Line Actions
	Kill and Actions
	Miscellaneous Actions
	Text Selections for Application Programmers

	Default Translation Bindings
	Text Functions
	Selecting Text
	Unhighlighting Text
	Getting Current Text Selection
	Replacing Text
	Searching for Text
	Redisplaying Text
	Resources Convenience Routines

	Ascii Text Widget
	Resources

	Ascii Source Object and Multi Source Object
	Resources
	Convenience Routines
	Conserving Memory
	Saving Files
	Seeing if the Source has Changed

	Ascii Sink Object and Multi Sink Object
	Resources

	Customizing the Text Widget
	Text Widget
	Resources

	TextSrc Object
	Resources
	Subclassing the TextSrc
	Reading Text.
	Replacing Text.
	Scanning the TextSrc
	Searching through a TextSrc
	Text Selections

	TextSink Object
	Resources
	Subclassing the TextSink
	Displaying Text
	Displaying the Insert Point
	Clearing Portions of the Text window
	Finding a Text Position Given Pixel Values
	Finding the Distance Between two Text Positions
	Finding the Size of the Drawing area
	Setting the Tab Stops
	Getting the Insert Point's Size and Location

	Chapter 6. Composite and Constraint Widgets
	Box Widget
	Resources
	Layout Semantics

	Dialog Widget
	Resources
	Constraint Resources
	Layout Semantics
	Example
	Special Considerations

	Automatically Created Children.
	Convenience Routines

	Form Widget
	Resources
	Constraint Resources
	Layout Semantics
	Example

	Convenience Routines

	Paned Widget
	Using the Paned Widget
	Resources
	Constraint Resources
	Layout Semantics
	Resizing Panes from a Grip Action
	Resizing Panes after the Paned widget is resized.
	Managing Children and Geometry Management
	Special Considerations

	Grip Translations
	Convenience Routines

	Porthole Widget
	Resources
	Layout Semantics
	Porthole Callbacks

	Tree Widget
	Resources
	Constraint Resources
	Layout Semantics
	Convenience Routines

	Viewport Widget
	Resources
	Layout Semantics

	Chapter 7. Creating New Widgets (Subclassing)
	Public Header File
	Private Header File
	Widget Source File

	Chapter 8. Acknowledgments
	Index

