Athena Widget Set - C Language Interface

X Consortium Standard

Chris D. Peterson, formerly MIT X Consortium

Athena Widget Set - C Language Interface: X Consortium Standard
by ChrisD. Peterson

libXaw Version 1.0.14
Copyright © 1985, 1986, 1987, 1988, 1989, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the“ Software™), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in al copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS1S’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE
LIABLEFORANY CLAIM, DAMAGESOR OTHERLIABILITY, WHETHERIN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGSIN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealingsin this Software without prior written authorization from the X Consortium.

X Window System is atrademark of The OpenGroup.
Copyright © 1985, 1986, 1987, 1988, 1989, 1991 Digital Equipment Corporation, Maynard, M assachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appearsin al copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein for any purpose. It isprovided “asis’ without express or implied
warranty.

Table of Contents

1. Athena Widgets and The INENSICSooveniiiii e 1
INtroduction t0 the X TOOIKITcccuuuieiiiii e 1
LI 10011 0T0] oo | PSP U PR PPP PR 2
UNAENYING MOGE ...t e s 3
Conventions Used in thiS ManUaliiiiiiiiiiii e 3
Format of the Widget Reference Chaptersuuuiiiiiiiiiiiiii e 4
INPUL FOCUS ...ttt ettt ettt e et e e e e e e e e e e e e eens 5

2. USING WIAGELS ...ttt ettt e et e et e e e et et e e e e nb e e e enanns 6
USING WILGELS ...ttt ettt e e ettt e e ettt e e e e et e e e e et e e e eenn e eeens 6

SEtiNG the LOCAIE ... et 6
INitializing the TOOIKItcooiii e 6
Creating @ WIQELoovnieiiii e 7
COMMON RESDUITEScvuiiiieieie ettt ettt e e e e e e e e e e e e e e e eenns 8
RESOUICE CONVEISIONS ... eeett ettt e ettt e et e e ettt e ettt e e e e et e e e e et e e e e enb e e eeennaeeees 9
RealiZING 8 WILGELot 10
Processing EVENLS ... 10
Standard Widget Manipulation FUNCLIONScocuuiiiiiiiiiieiiiii e 10
Using the Client Callback INterface ..o 12
Programming CONSIAEIEIIONSccuuueiieitieeieii ettt e et e e et e e e e e eennenns 13
EXAMPIE PrOGIaIMS ... cceeiieiiii ettt e e e enanas 18

3. SIMPIE WIGELS ..ttt ettt e et 19

ComMEANG WIAGEL ...ttt ettt et e et e e e e 19
RESOUICES ...ttt e e e e e r e e e e 20
COMMEANG ACLIONS ...ttt et e e 21

GEIP WIGEL ...t ettt et e e e 22
RESOUICES ...ttt e e e e e r e e e e 22
GIIP ACHIONS ...ttt et et ettt et et e e e e eaaas 23

LADE WIHGEL ...t ettt 24
RESOUICES ...ttt e e e e e r e e e e 25

B AT To o = PP PP PR 26
RESOUICES ...ttt ettt e e e r e e e 26
LISt ACHIONS ...ttt ettt eaaas 28
LiSt CAllDBCKS ..o 29
Changing the LIStooeiiiiiiii e et e e e 29
Highlighting @n TEeM ... e 30
Unhighlighting an [TemM ... 30
Retrieving the Currently Selected [Tem ... 30
RESIICHIONS ...ttt e e 30

PANNEr WILGEL ...t ettt e e 31
RESOUICES ...ttt et et e e e e e 31
PANNEr ACHIONS ..ot 33
Panner CallDacKSiiiiii e 34

REPEALET WILGEL ...ttt e e 34
RESOUICES ...ttt et et e e e e e 35
REDEALET ACHIONS ...ttt ettt ettt 37

SCrollar WIGELoeeeeeie et e et e 37
RESOUICES ...ttt ettt et e e e e e 38
SCrOHDEI ACLIONS ...t et 40
SCrollbar CallDACKScceii e 41
CONVENIENECE ROULINESoiiiiiieeeeii ettt e et e e 41
SEtting FlOBE RESOUICEScciiiii ettt et e e e e et e eeees 42

Athena Widget Set -
C Language Interface

S 0T TSI T o T PN 42
RESOUICES ... ittt e 43
SHPCIAIT WILGEL ...eeeiii e e e e e e e e et e e e eaens 43
RESOUICES ... ittt e 44
Getting the StripChart Valuecoouiiiiiii e e 45

LI o o =TT T o = 45
RESOUICES ... ittt e 46

QLI oo =30 AN 1 48

QLI oo =30 AN 1 48
(R [0 o0 oL 49
CONVENIENCE ROULINESovuiceii et e e e e e e e e e et e e et e et e e et e e ean e eeas 49

A, IVLBINUS ...t 51
USING the IMENUS ...oeiiiii e e e e e e e e e et e e e e et e e et e aaenaes 51
SIMPIEMENU WIAJEL ... cevniiii e e e e e e e e e e e e e e eaens 51
RESOUICES ... ittt e 52
SIMPIEMENU ACLONSuiiiieii e e e e e e e e e e e eaen 54
Positioning the SIMPIEMENUc.uiiiiiiiii e 55
COoNVENIENCE ROULINESoeueceii it e e e e e e e e e e e et e e et e et e e et e e eaeeeees 55

S 0SS 1S S T @ <ot PPN 56
RESOUICES ... ittt e 56

S 101= T 0T O o= v 58
RESOUICES ... ittt e e 58

S TSI @ o= o 59
RESOUICES ... ittt e e 59
Subclassing the SME ObJECTcvvviiiice e e 59

K= LU0 1x o) IV Yo o = P 60
RESOUICES ... ittt e e 60
MENUBULLON ACHIONS .. .eeuuiiiieii e e e e e e e e e e e e e e e et e e e e aaeeeen 62
MENUBULLON ACHIONS .. .eeuuiiiieii e e e e e e e e e e e e e e e et e e e e aaeeeen 62

T 1= AT o [0 = £ 64
I AY o o 1= i o G U = 64
Default Key BiNGINGS .. .c.vuiiiiiiii et e e e e e e e eaaas 64
SearCh and REPIBCEcvu i 65

L LT 1 0= o o PP 67

TeXt SElECtiONS FOr USEIS ..uuiiiiiiii e e e e eeas 67

L= AT/ To o 1= o o) 1 PP 68
CUrsor MOVEMENE ACHIONSuuiiiieei e e e e e e e e e e e e e e et e e e e eaenas 68
DEIEIE ACHIONS .. ietiiiii e e e et e e e e e e e e e e e e aaa s 69
SElECHON ACHIONS . .eieiii et e e e e e e e e e e et e e e e eaaeee 70

The NeW LiNE ACHONSuiiiiiieii e e e e e e e e e e aa s 70

[T L= To AN 1 71
MISCEIIANEOUS ACLIONSiivieii et e e e et e e e e aneees 71

Text Selections for Application Programimersccuiveiiiieiiiieiiii e ee e e e eeeeeae 73
Default Trandation BinAINGSccuuiiiiiiiiiciie e e e e e e e e eenees 74
L= ot 0 PN 75
= o o T 1= N 76
Unhighlighting TEXEccveiiiiie e e e e e e e e e e e e aane e 76
Getting Current TexXt SEIECHIONiiiii i e 76

[o] 1 1o TR = S 76

S c o ol T g o I (o) B = P 77
RS0 (1S o = Y71 o TR =« P 77
Resources ConvenienCe ROULINEScvvuiiiiiieiiie e e e e e e e e e e e e ean e eees 78

F NS o T = AL o (o T 79
RESOUICES ... ittt e 80

Athena Widget Set -
C Language Interface

Ascii Source Object and Multi SOUrce ODJECEuuiiiiieiii e 81
RESOUICES ... ittt e 82
COoNVENIENCE ROULINESivuiceii e e e e e e e e e e e e e e et e e et e e ean e eees 83

Ascii Sink Object and Multi SINK OBJECEiiiiiiii e, 84
RESOUICES ... ittt e 84

Customizing the TeXt WIAQELcovuniiiiiiiiie e e e e e e 85

B2 AT T o= 86
RESOUICES ... ittt e 86

LIS (o @ o= o PP 87
RESOUICES ... ittt e 87
SUBCIASSING thE TEXISIC c.vvuiii i e e e e ae s 88

=S T o= 90
RESOUICES ... ittt e 91
SUBCIaSSING the TEXISINKcveiiii e e 91

6. Composite and ConStraiNnt WIAQELScvvrniiiii e e e e e e aeaas 96

[T0)t QY To o = 96
RESOUICES ... ittt e 97
LayOUL SEMANTICS ...ivuniii e e e e e e e e e e e e e e e e e e st s e et eeta e e et eenanaes 98

[Tz oo YAV o o= 98
RESOUICES ... ittt e 99
CONSITAINT RESOUICES ... eivieiii i eei et e et e e e e e e e e e e e et e e et e e st e e et e eeanaeeaneees 100
[Y0 0| S = 1 7= 411 = 101
Automatically Created Children.cooiiiiiiiiii e 102
CONVENIENCE ROULINESceuiiiie i e e e e e e e e e e e e e e et e e et eeaaeeaanaes 102

L0 AV T o = 103
(< 0 L1 o = PP 103
CONSITAINT RESOUICES ... iivieiiiieeie e e e et e e e e e e e e e e e e et e e et e e st e e et e e s e eaneees 104
[Y0 0| S = 1 7= 411 = 105
CONVENIENCE ROULINESceuiiiieeii e e e e e e e e e e e e e e e e e et e e et e e e e eaanaes 106

[z 101= o IRVLY T o = PP 106
Using the Paned WIdQELoovniiiiieie e e 107
(< 0 L1 o = PP 107
CONSITAINT RESOUICES ... iivieiiiieeie e e e et e e e e e e e e e e e e et e e et e e st e e et e e s e eaneees 109
[Y0 | S = 1 7= 411 =Y 110
LT a1 o T I =01 = 1 o] N 111
CONVENIENCE ROULINESceuiiii i e e e e e e e e e e e e e e e e et e e et eeaaeeaanaes 112

[0 100 LAY T o = P 113
[0 L1 o = PP 113
[Y0 | S = 1 7= 411 =Y 114
POrthole CallbaCKSccuuiiiii e e 114

LA o = P 115
[0 L1 o = PP 115
CONSITAINT RESOUICES ... iivieiiiieeiie e e e et e e e e e e e e et e e et e e et e e et e e et e e sanaeeaneees 116
[Y0 | S = 1 7= 411 o= 116
CONVENIENCE ROULINESceuiiiiie i e e e e e e e e e e e e e e et e e et e e e e eaanaes 117

R L= o o) YAV o o L= 117
[0 L1 o = PP 117
[Y0 | S = 1 7= 411 o= 119

7. Creating New Widgets (SUBCIASSING)vvvniiiiieiii e e aeaas 120

o] ol o == o L= | 121

Private Header Filecoou i e 123

WIAQEL SOUCE FlE .. e e s 124

8. ACKNOWIEAGMENES .. .eiiiii e e e e e e e et e e et e e et e e e e e eanaees 128
o = 130

Chapter 1. Athena Widgets and The
Intrinsics

The X Toolkit is made up of two distinct pieces, the Xt Intrinsics and a widget set. The Athena widget
set is a sample implementation of awidget set built upon the Intrinsics. In the X Toolkit, a widget is the
combination of an X window or subwindow and its associated input and output semantics.

Because the Intrinsics provide the same basic functionality to all widget sets it may be possible to use
widgets from the Athena widget set with other widget sets based upon the Intrinsics. Since widget sets
may also implement private protocols, all functionality may not be available when mixing and matching
widget sets. For information about the Intrinsics, see the X Toolkit Intrinsics - C Language Interface.

The Athena widget set is a library package layered on top of the Intrinsics and Xlib that provides a set
of user interface tools sufficient to build a wide variety of applications. This layer extends the basic
abstractions provided by X and provides the next layer of functionality primarily by supplying a cohesive
set of sample widgets. Although the Intrinsics are a Consortium standard, there is no standard widget set.

To the extent possible, the Intrinsics are "policy-free". The application environment and widget set, not
the Intrinsics, define, implement, and enforce:

» Policy
» Consistency
» Style

Each individual widget implementation definesits own policy. The X Toolkit design allows for, but does
not necessarily encourage, the free mixing of radically differing widget implementations.

Introduction to the X Toolkit

The X Toolkit provides tools that simplify the design of application user interfaces in the X Window
System programming environment. It assists application programmers by providing a set of common
underlying user-interface functions. It also lets widget programmers modify existing widgets, by
subclassing, or add new widgets. By using the X Toolkit in their applications, programmers can present a
similar user interface across applications to all workstation users.

The X Toolkit consists of:

» A set of Intrinsics functions for building widgets

» An architectural model for constructing widgets

* A widget set for application programming

While the magjority of the Intrinsics functions are intended for the widget programmer, a subset of the
Intrinsics functions are to be used by application programmers (see X Toolkit Intrinsics - C Language
Interface). The architectural model lets the widget programmer design new widgets by using the Intrinsics
and by combining other widgets. The application interface layers built on top of the X Toolkit include a

coordinated set of widgets and composition policies. Some of these widgets and policies are specific to a
single application domain, and others are common to a variety of applications.

Athena Widgets and The Intrinsics

The remainder of this chapter discusses the X Toolkit and Athena widget set:

* Terminology

* Mode

» Conventions used in this manual

Terminology

Format of the Widget Reference Chapters

In addition to the terms already defined for X programming (see Xlib - C Language Interface), the
following terms are specific to the Intrinsics and Athena widget set and used throughout this document.

Application programmer

Child
Class

Client

FullName
Instance
Method

Name

Object

Parent

Resource

Superclass

User

A programmer who uses the X Toolkit to produce an application user
interface.

A widget that is contained within another "parent” widget.
The general group to which a specific object belongs.

A function that uses awidget in an application or for composing other
widgets.

The name of awidget instance appended to the full name of its parent.
A specific widget object as opposed to a general widget class.
A function or procedure implemented by awidget class.

The name that is specific to an instance of awidget for a given client.
Thisname is specified at creation time and cannot be modified.

A data abstraction consisting of private data and private and public
functions that operate on the private data. Users of the abstraction
can interact with the object only through calls to the object's public
functions. In the X Toolkit, some of the object's public functions are
called directly by the application, while others are called indirectly
when the application calls the common Intrinsics functions. In
genera, if afunction is common to al widgets, an application uses
a single Intrinsics function to invoke the function for all types of
widgets. If afunction is unique to a single widget type, the widget
exports the function.

A widget that contains at least one other ("child") widget. A parent
widget is also known as a composite widget.

A named piece of data in a widget that can be set by aclient, by an
application, or by user defaults.

A larger class of which a specific classis a member. All members of
a class are also members of the superclass.

A person interacting with aworkstation.

Athena Widgets and The Intrinsics

Widget An object providing a user-interface abstraction (for example, a
Scrollbar widget).

Widget class The general group to which a specific widget belongs, otherwise
known as the type of the widget.

Widget programmer A programmer who adds new widgets to the X Toolkit.

Underlying Model

The underlying architectural model is based on the following premises:
Widgets are X windows

Every user-interface widget is associated with an X window. The X window ID for awidget isreadily
available from the widget. Standard Xlib calls can be used by widgets for many of their input and
output operations.

Information hiding

Thedatafor every widget is private to the widget and its subclasses. That is, the datais neither directly
accessible nor visible outside of the module implementing the widget. All program interaction with
the widget is performed by a set of operations (methods) that are defined for the widget.

Widget semantics and widget layout geometry

Widget semantics are clearly separated from widget layout geometry. Widgets are concerned with
implementing specific user-interface semantics. They have little control over issues such as their
size or placement relative to other widget peers. Mechanisms are provided for associating geometric
managers with widgets and for widgets to make suggestions about their own geometry.

Conventions Used in this Manual

» All resources available to the widgets are listed with each widget. Many of these are available to more
than one widget class due to the object oriented nature of the Intrinsics. The new resources for each
widget are listed in bold text, and the inherited resources are listed in plain text.

» Global symbols are printed in bol d and can be function names, symbols defined in include files, or
structure names. Arguments are printed in italics.

» Each function is introduced by a general discussion that distinguishes it from other functions. The
function declaration itself follows, and each argument is specifically explained. General discussion of
the function, if any is required, follows the arguments. Where applicable, the last paragraph of the
explanation lists the return values of the function.

» To eliminate any ambiguity between those arguments that you pass and those that a function returns
to you, the explanations for all arguments that you pass start with the word specifies or, in the case of
multiple arguments, the word specify. The explanations for al arguments that are returned to you start
with the word returns or, in the case of multiple arguments, the word return. The explanations for all
arguments that you can pass and are returned start with the words specifies and returns.

« Any pointer to a structure that is used to return a value is designated as such by the _return suffix as
part of itsname. All other pointers passed to these functions are used for reading only. A few arguments
use pointers to structures that are used for both input and output and are indicated by using the _in_out
suffix.

Athena Widgets and The Intrinsics

Format of the Widget Reference Chapters

The mgjority of this document is areference guide for the Athena widget set. Chapters three through six
give the programmer all information necessary to use the widgets. The layout of the chapters follows a
specific pattern to allow the programmer to easily find the desired information.

Thefirst few pages of every chapter give an overview of the widgets in that section. Widgets are grouped
into chapters by functionality.

» Chapter 3, Smple Widgets

» Chapter 4, Menus

» Chapter 5, Text Widgets

» Chapter 6, Composite and Constraint Widgets

Following the introduction will be a description of each widget in that chapter. When no functional
grouping is obvious the widgets are listed in alphabetical order, such asin chapters three and six.

Thefirst section of each widget's description is atable that contains general information about this widget
class. Hereisthe table for the Box widget, and an explanation of all the entries.

Application Header file <X11/ Xaw Box. h>
Cl ass Header file <X11/Xaw BoxP. h>

Cl ass boxW dget d ass

Cl ass Nanme Box

Super cl ass Conposite

Application Header File This file must be included when an application uses this widget.
It usually contains the class definition, and some resource macros.
Thisis often called the “public” header file.

Cl ass Header File Thisfile will only be used by widget programmers. It will need to
beincluded by any widget that subclasses thiswidget. Thisis often
called the “private” header file.

d ass Thisisthe widget class of thiswidget. Thisglobal symbol is passed
to Xt Cr eat eW dget so that the Intrinsics will know which type
of widget to create.

G ass Nane Thisisthe resource name of this class. This name can beusedin a

resource file to match any widget of this class.

Super cl ass This is the superclass that this widget class is descended from.
If you understand how the superclass works it will allow you to
more quickly understand what this widget does, since much of its
functionality may be inherited from its superclass.

After thistable follows a general description of the default behavior of thiswidget, as seen by the user. In
many cases this functionality may be overridden by the application programmer, or by the user.

Athena Widgets and The Intrinsics

The next section is a table showing the name, class, type and default value of each resource that is
available to this widget. There is also a column containing notes describing special restrictions placed
upon individual resources.

A This resource may be automatically adjusted when another resource is changed.

C Thisresourceis only settable at widget creation time, and may not be modified with
Xt Set Val ues.

D Do not modify this resource. While setting this resource will work, it can cause
unexpected behavior. When this symbol appearsthereisanother, preferred, interface
provided by the X Toolkit.

R Thisresource is READ-ONLY, and may not be modified.

After the resource table is adetail ed description of every resource available to that widget. Many of these
are redundant, but printing them with each widget saves page flipping. The names of the resourcesthat are
inherited are printed in plain text, while the names of the resources that are new to this class are printed
in bol d. If you have already read the description of the superclass you need only pay attention to the
resources printed in bold.

For each composite widget thereis asection on layout semanticsthat followsthe resource description. This
section will describe the effect of constraint resources on the layout of the children, as well as a general
description of where it prefersto place its children.

Descriptions of default translations and action routines come next, for widgetsto which they apply. Thelast
item in each widget's documentation is the description of al convenience routines provided by the widget.

Input Focus

TheIntrinsics define aresource on all Shell widgetsthat interact with the window manager calledi nput .
This resource requests the assistance of window manager in acquiring the input focus. The resource
defaultsto Fal se inthe Intrinsics, but is redefined to default to Tr ue when an application is using the
Athena widget set. An application programmer may override this default and set the resource back to
Fal se if the application does not need the window manager to give it the input focus. See the X Toolkit
Intrinsics - C Language Interface for details on the input resource.

Chapter 2. Using Widgets
Using Widgets

Widgets serve as the primary tools for building a user interface or application environment. The Athena
widget set consists of primitive widgets that contain no children (for example, a command button) and
composite widgets which may contain one or more widget children (for example, a Box widget).

The remaining chapters explain the widgets that are provided by the Athena widget set. These user-
interface components serve as an interface for application programmers who do not want to implement
their own widgets. In addition, they serve as a starting point for those widget programmers who, using the
Intrinsics mechanisms, want to implement alternative application programming interfaces.

This chapter is a brief introduction to widget programming. The examples provided use the Athena
widgets, though most of the conceptswill apply to all widget sets. Although there are several programming
interfaces to the X Toolkit, only one is described here. A full description of the programming interface is
provided in the document X Toolkit Intrinsics - C Language Interface.

Setting the Locale

If it is desirable that the application take advantage of internationalization (i18n), you must establish
locale with Xt Set LanguagePr oc prior to calling Xt QpenAppl i cati on, Xt OpenbDi spl ay,
XtDisplaylnitialize, or Xt Applnitialize. For full details, please refer to the document
X Toolkit Intrinsics - C Language Interface, section 2.2. However, the following simplest-case call is
sufficient in many or most applications.

Xt Set LanguagePr oc(NULL, NULL, NULL);

Most notably, this will affect the Standard C locale, determine which resource files will be loaded, and
what fonts will be required of FontSet specifications. In many cases, the addition of thislineis the only
source change required to internationalize Xaw programs, and will not disturb the function of programs
inthe default "C" locale.

Initializing the Toolkit

You must call atoolkit initialization function before invoking any other toolkit routines (besides locale
setting, above). Xt OpenAppl i cat i on, opensthe X server connection, parses the command line, and
creates an initial widget that will serve as the root of atree of widgets created by this application.

W dget Xt QpenAppl i cati on(app_context _return, application_cl ass,
options, numoptions, argc_in_out, argv_in_out, fallback resources,
wi dget _cl ass, args, num args);

app_context_return Returns the application context of this application, if non-NULL.

application_class Specifies the class name of this application, which is usually
the generic name for al instances of this application. A useful

Using Widgets

conventionistoformtheclassnameby capitalizing thefirst |l etter of
the application name. For example, the application named “xman”
has a class name of “Xman”.

options Specifies how to parse the command line for any application-
specific resources. The options argument is passed as a parameter
to Xr mPar seCommand. For further information, see Xlib - C
Language Interface.

num_options Specifies the number of entriesin the options list.

argc_in_out Specifies a pointer to the number of command line parameters.
argv_in_out Specifies the command line parameters.

fallback_resources Specifies resource values to be used if the site-wide application

class defaults file cannot be opened, or NULL.

widget_class Specifies the class of the widget to be created. Must be
shellWidgetClass or a subclass.

args Specifies the argument list to use when creating the Application
shell.

num_args Specifies the number of argumentsin args.

This function will remove the command line arguments that the toolkit reads from argc_in_out, and
argv_in_out. It will then attempt to open the display. If the display cannot be opened, an error messageis
issued and XtApplnitialize terminates the application. Once the display is opened, all resources are read
from the locations specified by the Intrinsics. This function returns an ApplicationShell widget to be used
asthe root of the application's widget tree.

Creating a Widget

Creating a widget is a three-step process. First, the widget instance is allocated, and various instance-
specific attributes are set by using Xt Cr eat eW dget . Second, the widget's parent is informed of the
new child by using Xt ManageChi | d. Finally, X windows are created for the parent and all its children
by using Xt Real i zeW dget and specifying the top-most widget. Thefirst two steps can be combined
by using Xt Cr eat eManagedW dget . In addition, Xt Real i zeW dget isautomatically called
when the child becomes managed if the parent is aready realized.

To dlocate, initialize, and manage awidget, use Xt Cr eat eManagedW dget .

W dget Xt Cr eat eManagedW dget (nane, wi dget _cl ass, par ent, args,

num ar gs) ;

name Specifies the instance name for the created widget that is used for
retrieving widget resources.

widget_class Specifies the widget class pointer for the created widget.

parent Specifies the parent widget ID.

args Specifies the argument list. The argument list is a variable-length

list composed of name and value pairs that contain information

Using Widgets

pertaining to the specific widget instance being created. For further
information, see Section 2.7.2.

num_args Specifies the number of arguments in the argument list. If the

num_argsis zero, the argument list is never referenced.

When a widget instance is successfully created, the widget identifier is returned to the application. If an
error is encountered, the Xt Er r or routineisinvoked to inform the user of the error.

For further information, see X Toolkit Intrinsics - C Language Interface.

Common Resources

Although awidget can have unique argumentsthat it understands, all widgets have common argumentsthat
provide some regularity of operation. The common arguments allow arbitrary widgets to be managed by
higher-level components without regard for the individual widget type. Widgets will ignore any argument
that they do not understand.

The following resources are retrieved from the argument list or from the resource database by all of the

Athena widgets:

Name Class Type Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive AncestorSensitive Boolean True
background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
colormap Colormap Colormap Parent's Colormap
depth Depth int Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension widget dependent
mappedWhenManaged | MappedWhenManaged Boolean True
screen Screen Screen Parent's Screen
sensitive Sensitive Boolean True
tranglations Trandations TrandationTable widget dependent
width Width Dimension widget dependent
X Position Position 0
y Position Position 0

The following additional resources are retrieved from the argument list or from the resource database by
many of the Athena widgets:

Name

Class

Type

Default Value

callback

Callback

XtCallbackList

NULL

Using Widgets

Name Class Type Default Value
cursor Cursor Cursor widget dependent
foreground Foreground Pixel XtDefaultForeground
insensitiveBorder Insensitive Pixmap GreyPixmap

Resource Conversions

Most resources in the Athena widget set have a converter registered that will trandate the string in a
resourcefileto the correct internal representation. While some are obvious (string to integer, for example),
others need specific mention of the allowable values. Three general converters are described here:

e Cursor
* Pixd
* Bitmap

Many widgets have defined special converters that apply only to that widget. When these occur, the
documentation section for that widget will describe the converter.

Cursor Conversion

The value for the cur sor Nane resource is specified in the resource database as a string, and is of the
following forms:

* A standard X cursor name from <X11/ cur sor font. h>. The names in cur sorfont . h each
describe a specific cursor. The resource names for these cursors are exactly like the namesin thisfile
except the XC_ isnot used. The cursor definition XC_gunby has a resource name of gunby.

* Glyphs, asin FONT font-name glyph-index[[font-name] glyph-index]. Thefirst font and glyph specify
the cursor source pixmap. The second font and glyph specify the cursor mask pixmap. The mask font
defaults to the source font, and the mask glyph index defaults to the source glyph index.

A relative or absolute file name. If arélative or absolute file name is specified, that file is used to create
the source pixmap. Then the string "Mask" is appended to locate the cursor mask pixmap. If the"Mask"
file does not exist, the suffix "msk" istried. If "msk" fails, no cursor mask will be used. If the filename
does not start with '/ or ./ the the bitmap file path is used (see section 2.4.3).

Pixel Conversion

The string-to-pixel converter takes any hame that is acceptable to X ParseColor (see Xlib - C Language
Interface). In addition this routine understands the specia toolkit symbols “XtDefaultForeground' and
“XtDefaultBackground', described in X Toolkit Intrinsics - C Language Interface. In short the acceptable
pixel names are:

» Any color name for the rgb.txt file (typically in the directory /usr/share/X11 on POSIX systems).

A numeric specification of theform #<red><green><blue>where these numeric values are hexadecimal
digits (both upper and lower case).

e The specia strings “XtDefaultForeground' and “XtDefaultBackground'

Using Widgets

Bitmap Conversion

The string-to-bitmap converter attemptsto locate afile containing bitmap datawhose nameis specified by
the input string. If the file name is relative (i.e. does not begin with / or ./), the directories to be searched
are specified in the bi t napFi | ePat h resource--class Bi t mapFi | ePat h. This resource specifies a
colon (;) separated list of directoriesthat will be searched for the named bitmap or cursor glyph (see section
2.4.1). Thebi t mapFi | ePat h resourceisglobal totheapplication, and may not be specified differently
for each widget that wishes to convert a cursor to bitmap. In addition to the directories specified in the
bi t mapFi | ePat h resource adefault directory is searched. When using POSI X the default directory is
/usr/include/ X11/ bi t maps.

Realizing a Widget
The Xt Real i zeW dget function performs two tasks:

» Calculates the geometry constraints of all managed descendants of this widget. The actual calculation
is put off until realize time for performance reasons.

» Creates an X window for the widget and, if it is a composite widget, realizes each of its managed
children.

voi d XtReal i zeWdget(w);
 Specifies the widget.

For further information about this function, see the X Toolkit Intrinsics - C Language Interface.

Processing Events

Now that the application has created, managed and realized its widgets, it is ready to process the
events that will be delivered by the X Server to this client. A function call that will process the events
is Xt AppMai nLoop.

voi d Xt AppMai nLoop(app_context);

app_context Specifies the application context of this application. The value is
normally returned by Xt CpenAppl i cati on.

This function never returns: it is an infinite loop that processes the X events. User input can be handled
through callback procedures and application defined action routines. More detailsare provided in X Tool kit
Intrinsics - C Language I nterface.

Standard Widget Manipulation Functions

After awidget has been created, aclient can interact with that widget by calling one of the standard widget
mani pulation routines provided by the Intrinsics, or awidget class-specific manipulation routine.

The Intrinsics provide generic routines to give the application programmer access to a set of standard
widget functions. The common widget routines let an application or composite widget perform the
following operations on widgets without requiring explicit knowledge of the widget type.

 Control the mapping of widget windows

» Destroy awidget instance

10

Using Widgets

« Obtain an argument value

» Set an argument value
Mapping Widgets
By default, widget windows are mapped (made viewable) automatically by Xt Real i zeW dget . This
behavior can be disabled by using Xt Set MappedWhenManaged, making the client responsible for
caling Xt MapW dget to make the widget viewable.
voi d Xt Set MappedwWhenManaged(w, map_when_nanaged) ;
w Specifies the widget.
map_when_managed Specifies the new value. If map when_managed is

True, the widget is mapped automaticaly when it is
readlized. If map when managed is Fal se, the client must

call Xt MapW dget or make a second cal to
Xt Set MappedWhenManaged to cause the child window to be
mapped.

The definition for Xt MapW dget is:

voi d Xt MapW dget (W) ;

w Specifies the widget.

When you are creating several children in sequence for apreviously realized common parent it isgenerally
more efficient to construct a list of children as they are created (using Xt Cr eat eW dget) and then
use Xt ManageChi | dr en torequest that their parent managed them all at once. By managing alist of
children at one time, the parent can avoid wasteful duplication of geometry processing and the associated
“screen flash”.

voi d Xt ManageChil dren(children, numchildren);

children Specifies alist of children to add.

num_children Specifies the number of children to add.

If the parent isalready visible onthe screen, it isespecially important to batch updates so that the minimum
amount of visible window reconfiguration is performed.

For further information about these functions, see the X Toolkit Intrinsics - C Language Interface.
Destroying Widgets

To destroy awidget instance of any type, use Xt Dest r oyW dget

voi d Xt DestroyWdget(w);

w Specifies the widget.

Xt DestroyW dget destroys the widget and recursively destroys any children that it may have,

including the windows created by its children. After calling Xt Dest r oyW dget , no further references
should be made to the widget or any children that the destroyed widget may have had.

11

Using Widgets

Retrieving Widget Resource Values
Toretrievethe current value of aresource attribute associated with awidget instance, use Xt Get Val ues.

voi d Xt GetValues(w, args, num.args);

w Specifies the widget.

args Specifies a variable-length argument list of name and addr ess pairs
that contain the resource name and the address into which the resource
valueis stored.

num args Specifies the number of arguments in the argument list.

The arguments and values passed in the argument list are dependent on the widget. Note that the caller is
responsible for providing space into which the returned resource value is copied; the Ar gLi st contains
a pointer to this storage (e.g. x and y must be allocated as Position). For further information, see the X
Toolkit Intrinsics - C Language Interface.

Modifying Widget Resource Values
To modify the current value of aresource attribute associated with awidget instance, use Xt Set Val ues.
voi d Xt SetValues(w, args, num.args);
w Specifies the widget.

args Specifies an array of name and val ue pairs that contain the arguments
to be modified and their new values.

num args Specifies the number of arguments in the argument list.

Theargumentsand valuesthat are passed will depend on the widget being modified. Some widgets may not
allow certain resourcesto be modified after thewidget instance hasbeen created or realized. No notification
isgivenif any part of a Xt Set Val ues request isignored.

For further information about these functions, see the X Toolkit Intrinsics - C Language Interface. The
argument list entry for Xt Get Val ues specifies the address to which the caller wants the value copied.
The argument list entry for Xt Set Val ues, however, contains the new value itsdlf, if the size of valueis
less than sizeof (XtArgVal) (architecture dependent, but at least sizeof(long)); otherwise, it is a pointer to
the value. String resources are always passed as pointers, regardless of the length of the string.

Using the Client Callback Interface

Widgets can communicate changesin their stateto their clients by means of acallback facility. The format
for aclient's callback handler is:

void Call backProc(w, client_data, «call_data);
w Specifies widget for which the callback is registered.

client_data Specifies arbitrary client-supplied data that the widget should pass
back to the client when the widget executes the client's callback
procedure. This is a way for the client registering the callback to
also register client-specific data: a pointer to additional information

12

Using Widgets

about the widget, a reason for invoking the callback, and so on. If
no additional information is necessary, NULL may be passed as this
argument. Thisfield is also frequently known as the closure.

call_data Specifies any callback-specific data the widget wants to pass to the
client. For example, when Scrollbar executesitsj unpPr oc callback
list, it passes the current position of the thumb in call_data.

Callbacks can be registered either by creating an argument containing the callback list described below
or by using the special convenience routines Xt AddCal | back and Xt AddCal | backs. When the
widget is created, a pointer to alist of callback procedure and data pairs can be passed in the argument list
to Xt Cr eat eW dget . Thelistisof type Xt Cal | backLi st

typedef struct {
Xt Cal | backProc cal |l back;
Xt Poi nter cl osure;
} XtCall backRec, *XtCall backLi st;

The callback list must be allocated and initialized before calling Xt Cr eat eW dget . Theend of thelist
isidentified by an entry containing NULL in callback and closure. Once the widget is created, the client
can change or de-alocate this list; the widget itself makes no further reference to it. The closure field
contains the client_data passed to the callback when the callback list is executed.

The second method for registering callbacks isto use Xt AddCal | back after the widget has been
crested.

voi d Xt AddCal | back(w, call back _name, callback, client_data);

w Specifies the widget to add the callback to.

callback_name Specifies the callback list within the widget to append to.
callback Specifies the callback procedure to add.

client_data Specifies the data to be passed to the callback when it is invoked.

Xt AddCal | back adds the specified callback to the list for the named widget.

All widgets provide a callback list named dest r oyCal | back where clients can register procedures
that are to be executed when the widget is destroyed. The destroy callbacks are executed when the widget
or an ancestor is destroyed. The call_data argument is unused for destroy callbacks.

Programming Considerations

This section provides some guidelines on how to set up an application program that uses the X Toolkit.
Writing Applications

When writing an application that usesthe X Toolkit, you should make surethat your application performs
the following:

1. Include<X11/ I ntri nsi c. h>inyour application programs. Thisheader file automatically includes
<X11/ Xl i b. h>, so all Xlib functions also are defined. It may also be necessary to include <X11/

13

Using Widgets

St ri ngDef s. h> when setting up argument lists, as many of the XtNsomething definitions are only
defined in thisfile.

2. Include the widget-specific header filesfor each widget type that you need to use. For example, <X11/
Xaw/ Label . h>and <X11/ Xaw/ Commrand. h>.

3. Call the Xt QpenAppl i cati on function before invoking any other toolkit or Xlib functions. For
further information, see Section 2.1 and the X Toolkit Intrinsics - C Language Interface.

4. To pass attributes to the widget creation routines that will override any site or user customizations, set
up argument lists. In this document, a list of valid argument names is provided in the discussion of
each widget. The names each have aglobal symbol defined that beginswith Xt Nto help catch spelling
errors. For example, Xt NI abel isdefined for thel abel resource of many widgets.

For further information, see Section 2.9.2.2.

5. When the argument list is set up, create the widget withthe Xt Cr eat eManagedW dget function.
For further information, see Section 2.2 and the X Toolkit Intrinsics - C Language Interface.

6. If thewidget hasany callback routines, set by the Xt Ncal | back argument or the Xt AddCal | back
function, declare these routines within the application.

7. After creating the initial widget hierarchy, windows must be created for each widget by calling
Xt Real i zeW dget on thetop level widget.

8. Most applications now sit in aloop processing events using Xt AppMai nLoop, for example:

Xt Cr eat eManagedW dget (nane, cl ass, parent, args, num.args);
Xt Real i zeW dget (shel) ;
Xt AppMai nLoop(app_cont ext);

9. For information about this function, see the X Toolkit Intrinsics - C Language Interface.

10.Link your application with | i bXaw (the Athena widgets), | i bXmu (miscellaneous utilities), | i bXt
(the X Toolkit Intrinsics), | i bSM(Session Management), | i bl CE (Inter-Client Exchange), | i bXext
(the extension library needed for the shape extension code which allows rounded Command buttons),
and | i bX11 (the core X library). The following provides a sample command line:

11
cc -0 application application.c -l Xaw -1 Xnu -1 Xt -ISM-1I1CE -1 Xext -1X11

Changing Resource Values

The Intrinsics support two methods of changing the default resource values; the resource manager, and
an argument list passed into XtCreateWidget. While resources values will get updated no matter which
method you use, the two methods provide dlightly different functionality.

Resource Manager This method picks up resource definitions described in Xlib - C Language
Interface from many different locations at run time. The locations most
important to the application programmer are the fallback resour ces and the app-
defaults file, (see X Toolkit Intrinsics - C Language Interface for the complete
list). Since these resource are loaded at run time, they can be overridden
by the user, alowing an application to be customized to fit the particular
needs of each individual user. These values can also be modified without the
need to rebuild the application, allowing rapid prototyping of user interfaces.

14

Using Widgets

Application programmers should use resources in preference to hard-coded
values whenever possible.

Argument Lists The values passed into the widget at creation time viaan argument list cannot be
modified by the user, and alow no opportunity for customization. It is used to
set resources that cannot be specified as strings (e.g. callback lists) or resources
that should not be overridden (e.g. window depth) by the user.

Specifying Resources

Itisimportant for all X Toolkit application programmersto understand how to usethe X Resource M anager
to specify resources for widgetsin an X application. This section will describe the most common methods
used to specify these resources, and how to use the X Resource manager.

Xrdb The xr db utility may be used to load a file containing resources into the
X server. Oncetheresources areloaded, the resourceswill affect any new
applications started on the display that they were |oaded onto.

Application Defaults The application defaults (app-defaults) file (hormally in /usr/share/
X11/app-defaults/classname) for an application is loaded whenever the
application is started.

The resource specification has two colon-separated parts, aname, and avalue. Thevalueis a string whose
format is dependent on the resource specified by name. Name is constructed by appending aresource name
to afull widget name.

The full widget name is a list of the name of every ancestor of the desired widget separated by periods
(.). Each widget also has a class associated with it. A classis atype of widget (e.g. Label or Scrollbar or
Box). Natice that class names, by convention, begin with capital letters and instance names begin with
lower case letters. The class of any widget may be used in place of its name in a resource specification.
Here are afew examples:

xman.form.button1 Thisisafully specified resource name, and will affect only widgets
called buttonl that are children of widgets called form that are
children of applications named xman. (Note that while typically
two widgets that are siblings will have different names, it is not
prohibited.)

Xman.Form.Command This will match any Command widget that is a child of a Form
widget that isitself achild of an application of class Xman.

Xman.Form.buttonl Thisis amixed resource name with both widget names and classes
specified.

This syntax allows an application programmer to specify any widget in the widget tree. To match more
than one widget (for example a user may want to make all Command buttons blue), use an asterisk (*)
instead of a period. When an asterisk is used, any number of widgets (including zero) may exist between
the two widget names. For example:

Xman* Command This matches all Command widgets in the Xman application.
Foo* buttonl This matches any widget in the Foo application that is named
buttonl.

The root of all application widget trees is the widget returned by Xt OpenAppl i cat i on. Even though
this is actually an ApplicationShell widget, the toolkit replaces its widget class with the class name of

15

Using Widgets

the application. The name of this widget is either the name used to invoke the application (ar gv[0])
or the name of the application specified using the standard -name command line option supported by the
Intrinsics.

Thelast step in constructing the resource name is to append the name of the resource with either aperiod
or asterisk to the full or partial widget name already constructed.

*foreground:Blue Specifiesthat all widgetsin all applicationswill have aforeground
color of blue.
Xman*borderWidth:10 Specifiesthat all widgetsin an application whose classis X man will

have a border width of 10 (pixels).

xman.form.buttonl.label: Testing Specifiesthat a particular widget in the xman application will have
alabel named Testing.

An exclamation point (!) in the first column of aline indicates that the rest of the line should be treated
as acomment.

Fi nal Words

The Resource manager is a powerful tool that can be used very effectively to customize X Toolkit
applications at run time by either the application programmer or the user. Some final pointsto note:

» An application programmer may add new resources to their application. These resources are associated
with the global application, and not any particular widget. The X Toolkit function used for adding the
application resourcesis Xt Get Appl i cati onResour ces.

» Becareful when creating resourcefiles. Since widgetswill ignore resources that they do not understand,
any spelling errors will cause aresource to have no effect.

» Only one resource line will match any given resource. There is a set of precedence rules, which take
the following general stance.

» « More specific overrides less specific, thus period always overrides asterisk.
* Names on the |eft are more specific and override names on the right.
« When resource specifications are exactly the same, user defaults will override program defaults.

For a complete explanation of the rules of precedence, and other specific topics see X Toolkit Intrinsics -
C Language Interface and Xlib - C Language Interface.

Creating Argument Lists

To set up an argument list for the inline specification of widget attributes, you may use any of the
four approaches discussed in this section. Each resource name has a global symbol associated with
it. This global symbol has the form XtNresource name. For example, the symbol for “foreground” is
Xt Nf or egr ound. For further information, see the X Toolkit Intrinsics - C Language I nterface.

Argument are specified by using the following structure:

typedef struct {
String nane;

16

Using Widgets

Xt ArgVal val ue;
} Arg, *ArglList;

Thefirst approach isto statically initialize the argument list. For example:

static Arg arglist[] = {

{ Xt Nwi dth, (XtArgVval) 400},
{ Xt Nnei ght, (XtArgVal) 300},
1

This approach is convenient for lists that do not need to be computed at runtime and makes adding or
deleting new elements easy. The Xt Nurber macro is used to compute the number of elements in the
argument list, preventing simple programming errors:

Xt Cr eat eW dget (nane, class, parent, arglist, XtNunber(arglist));

The second approach isto use the Xt Set Ar g macro. For example:

Arg arglist[10];
Xt Set Arg(arglist[1], XtNwi dth, 400);
Xt Set Arg(arglist[2], XtNnheight, 300);

To makeit easier to insert and delete entries, you also can use a variable index:

Arg arglist[10];

Cardi nal i=0;

XtSet Arg(arglist[i], XtNwi dth, 400); i ++;
Xt Set Arg(arglist[i], XtNheight, 300); i ++;

Thei variable can then be used as the argument list count in the widget create function. In this example,
Xt Nunber would return 10, not 2, and therefore is not useful. Y ou should not use auto-increment or
auto-decrement within the first argument to Xt Set Ar g. Asit is currently implemented, Xt Set Ar g isa
macro that dereferences the first argument twice.

The third approach isto individually set the elements of the argument list array:

Arg arglist[10];

arglist[0].name = XtNw dth;
arglist[0].value = (XtArgVval) 400;
arglist[1].name = XtNheight;

arglist[1].val ue (Xt Argval) 300;

17

Using Widgets

Note that in this example, asin the previous example, Xt Nunber would return 10, not 2, and therefore
would not be useful.

The fourth approach is to use a mixture of the first and third approaches. you can statically define the
argument list but modify some entries at runtime. For example:

static Arg arglist[] = {
{Xt Nwi dt h, (XtArgVal) 400},
{ Xt Nhei ght, (XtArgVval) NULL},

}1
arglist[1].value = (XtArgVval) 300;

Inthisexample, Xt Nunber can beused, asin thefirst approach, for easier code maintenance.

Example Programs

The best way to understand how to use any programming library is by trying some simple examples. A
collection of example programs that introduces each of the widgets in that Athenawidget set, as well as
many important toolkit programming concepts, is available in the X 11R5 contrib rel ease as distributed by
the X Consortium. It can be found in the directory cont r i b/ exanpl es/ Xawin the archive at http://
www.x.org/releases/ X 11R5/contrib-1.tar.Z See the README file from that directory for a guide to the
examples.

18

http://www.x.org/releases/X11R5/contrib-1.tar.Z
http://www.x.org/releases/X11R5/contrib-1.tar.Z

Chapter 3. Simple Widgets

Each of these widgets performsaspecific user interface function. They are simple becausethey cannot have
widget children—they may only be used as leaves of the widget tree. These widgets display information
or take user input.

Conmmand

Gip
Label

Li st

Panner

Repeat er

Scrol | bar

Si npl e

StripChart

Toggl e

A push button that, when selected, may cause a specific action to take place. Thiswidget
can display a multi-line string or a bitmap or pixmap image.

A rectangle that, when selected, will cause an action to take place.
A rectangle that can display a multi-line string or a bitmap or pixmap image.

A list of text strings presented in row column format that may be individually selected.
When an element is selected an action may take place.

A rectangular areacontaining aslider that may be moved intwo dimensions. Notification
of movement may be continuous or discrete.

A push button that triggers an action at an increasing rate when selected. Thiswidget can
display amulti-line string or a bitmap or pixmap image.

A rectangular area containing a thumb that when slid along one dimension may cause a
specific action to take place. The Scrollbar may be oriented horizontally or vertically.

The base class for most of the simple widgets. Provides arectangular areawith a settable
mouse cursor and special border.

A real time data graph that will automatically update and scroll.

A push button that contains state information. Toggles may also be used as "radio
buttons' to implement a "one of many" or "zero or one of many" group of buttons. This
widget can display a multi-line string or abitmap or pixmap image.

Command Widget

Application header file <X11/ Xaw Comrand. h>

Cl ass header file <X11/ Xaw CommandP. h>

C ass commandW dget d ass

Cl ass Nane Command

Super cl ass Label

The Command widget is an area, often rectangular, that contains text or a graphical image. Command
widgets are often referred to as “push buttons.” When the pointer is over a Command widget, the widget
becomes highlighted by drawing a rectangle around its perimeter. This highlighting indicates that the
widget is ready for selection. When mouse button 1 is pressed, the Command widget indicates that it has

19

Simple Widgets

been selected by reversing its foreground and background colors. When the mouse button is released, the
Command widget's not i fy action isinvoked, calling all functions on its callback list. If the pointer is
moved off of the widget before the pointer button is released, the widget reverts to its normal foreground
and background colors, and releasing the pointer button has no effect. This behavior allows the user to

cancel an action.

Resources

When creating a Command widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgroun(F
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixma[b
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's Colormap
cornerRoundPercentCornerRoundPercent Dimension 25
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar awTextEncoding8bit
font Font XFontStruct XtDefaultFont
foreground Foreground Pixel X tDefaultForeground
height Height Dimension A graphic
height + 2 *
i nt er nal Hei ght
highlightThickness Thickness Dimension A 2 (0if Shaped)
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
internal Width Width Dimension 4
international International Boolean C False
justify Justify Justify XtJustifyCenter
(center)
|abel Label String name of widget
leftBitmap LeftBitmap Bitmap None

20

Simple Widgets

Name Class Type Notes Default Value
mappedWhenM anagélappedwWhenManaged Boolean True
pointerColor Foreground Pixel X tDefaultForeground
pointerColorBackground Background Pixel X tDefaultBackground
resize Resize Boolean True
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
shapeStyle ShapeStyle ShapeStyle Rectangle
translations Tranglations TrandationTable See below
width Width Dimension A graphic width + 2 *
i nternal Wdth
X Position Position 0
y Position Position 0

Command Actions

The Command widget supports the following actions:

 Switching the button's interior between the foreground and background colors with set , unset , and

reset.

» Processing application callbackswithnoti fy

» Switching the internal border between highlighted and unhighlighted states with hi ghl i ght and

unhi ghl i ght

The following are the default trandation bindings used by the Command widget:

<Ent er W ndow>: hi ghlight ()

<LeaveW ndow>:

<Bt n1Down>:
<Bt n1Up>:

reset ()

set ()
notify() unset()

Thefull list of actions supported by Command is:

hi ghl i ght (condi ti on)

unhi ghl i ght ()

set ()

Displays the internal highlight border in the color (f or egr ound
or background) that contrasts with the interior color of the
Command widget. The conditions WhenUnset and Al ways are
understood by this action procedure. If no argument is passed,

WhenUnset isassumed.

Displays the internal highlight border in the color (f or egr ound
or backgr ound) that matchestheinterior color of the Command

widget.

Enters the set state, in which not i fy is possible. This action
causes the button to display itsinterior in thef or egr ound color.
Thelabel or bitmap is displayed in the backgr ound color.

21

Simple Widgets

Grip

unset () Cancels the set state and displays the interior of the button in
the backgr ound color. The label or bitmap is displayed in the

f or egr ound color.

reset () Cancels any set or highlight and displays the interior of the button
in the backgr ound color, with the label or bitmap displayed in

thef or egr ound color.

When the buttonisintheset statethisaction callsall functionsin
the callback list named by the cal | back resource. The vaue of
the call_data argument passed to these functionsis undefined.

notify()

A very common alternativeto registering callbacksisto augment a Command's trand ations with an action
performing the desired function. This often takes the form of::

*Myapp*save. transl ati ons: #augment <Bt nlDown>, <Bt nlUp>: Save()

When a bitmap of depth greater that one (1) is specified the set(), unset(), and reset() actions have no
effect, since there are no foreground and background colors used in a multi-plane pixmap.

Widget

Application header file <X11/ Xaw Gri p. h>
Cl ass header file <X11/ Xaw Gri pP. h>

Cl ass gri pWdget d ass

Class Name Gip

Supercl ass Sinpl e

The Grip widget provides a small rectangular region in which user input events (such as ButtonPress or
ButtonRelease) may be handled. The most common use for the Grip widget is as an attachment point for
visualy repositioning an object, such as the pane border in a Paned widget.

Resources

When creating a Grip widget instance, the following resources are retrieved from the argument list or from
the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True

22

Simple Widgets

Name Class Type Notes Default Value
background Background Pixel (tDefauItBackgroun(ij
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixmaﬂ)
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 0
callback Callback Callback NULL
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel XtDefaultForeground
height Height Dimension 8
insensitiveBorder Insensitive Pixmap GreyPixmap
international International Boolean C False
mappedWhenM anagélappedWhenManaged Boolean True
pointerColor Foreground Pixel X tDefaultForeground
pointerColorBackground Background Pixel X tDefaultBackground
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
tranglations Tranglations TranslationTable NULL
width Width Dimension 8
X Position Position 0
y Position Position 0
cal | back All routines on thislist are called whenever the Gri pAct i on action

f or eground

Grip Actions

routine is invoked. The call_data contains al information passed to
the action routine. A detailed description is given below inthe Gri p
Act i ons section.

A pixel value which indexes the widget's colormap to derive the color
used to flood fill the entire Grip widget.

The Grip widget does not declare any default event trand ation bindings, but it does declare asingle action
routine named Gr i pAct i on. The client specifies an arbitrary event translation table, optionally giving
parametersto the Gri pAct i on routine.

The Gri pAct i on routine executes the callbacks on the cal | back list, passing as cal | _data a
pointer to aXawG i pCal | Dat a structure, defined in the Grip widget's application header file.

23

Simple Widgets

typedef struct _XawGipCallData {
XEvent *event,
String *parans;
Car di nal num par ans;
} XawG i pCal | Dat aRec, *XawG i pCal | Dat a,
GipCal | DataRec, *GipCall Data; /* supported for R4 conpatibility */

In this structure, the event isapointer to the input event that triggered the action. params and num_params
give the string parameters specified in the trandlation table for the particular event binding.

The following is an example of a translation table that uses the GripAction:

<Bt n1Down>: Gi pActi on(press)
<Bt n1Moti on>: Gi pActi on(nove)
<Bt nlUp>: Gi pAction(rel ease)

For a complete description of the format of trandation tables, see the X Toolkit Intrinsics - C Language
Interface.

Label Widget

Application header file <X11/ Xaw Label . h>

Cl ass header file <X11/ Xaw Label P. h>

Cl ass | abel Wdget d ass

Cl ass Name Label

Supercl ass Sinpl e

A Label widget holds a graphic displayed within a rectangular region of the screen. The graphic may be
atext string containing multiple lines of charactersin an 8 bit or 16 bit character set (to be displayed with
afont), or in amulti-byte encoding (for use with a fontset). The graphic may also be a bitmap or pixmap.

The Label widget will allow its graphic to be l€ft, right, or center justified. Normally, this widget can be
neither selected nor directly edited by the user. It isintended for use as an output device only.

24

Simple Widgets

Resources

When creating a Label widget instance, the following resources are retrieved from the argument list or
from the resource database;
Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgroun(F
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixma[b
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar awTextEncoding8bit
font Font XFontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel X tDefaultForeground
height Height Dimension A graphic
height + 2 *
i nt er nal Hei ght
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
interna Width Width Dimension 4
international International Boolean C False
justify Justify Justify XtdustifyCenter
(center)
|abel L abel String name of widget
leftBitmap LeftBitmap Bitmap None
mappedWhenM anagétlappedwWhenManaged Boolean True
pointerColor Foreground Pixel X tDefaultForeground
pointerColorBackground Background Pixel X tDefaultBackground
resize Resize Boolean True
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True

25

Simple Widgets

Name Class Type Notes Default Value
trandations Translations TrandationTable See above
width Width Dimension A graphic width + 2 *
i nternal Wdth
X Position Position 0
y Position Position 0

List Widget

Application header file <X11/Xaw Li st. h>
Cl ass header file <X11/ Xaw Li st P. h>

Cl ass |istWdgetd ass

Cl ass Name Li st

Supercl ass Sinmpl e
The List widget contains a list of strings formatted into rows and columns. When one of the strings is

selected, it is highlighted, and the List widget's Not i f y action is invoked, calling al routines on its
callback list. Only one string may be selected at atime.

Resources
When creating a List widget instance, the following resources are retrieved from the argument list or from
the resource database:
Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgrounqi
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixmaﬂ)
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
callback Callback Callback NULL
colormap Colormap Colormap Parent's Colormap
columnSpacing Spacing Dimension 6

26

Simple Widgets

col umSpaci ng

Name Class Type Notes Default Value
cursor Cursor Cursor XC_left_ptr
cursorName Cursor String NULL
defaultColumns Columns int 2
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
font Font FontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
forceColumns Columns Boolean False
foreground Foreground Pixel X tDefaultForeground
height Height Dimension A Enough space to
contain the list
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
interna Width Width Dimension 4
international International Boolean C False
list List Pointer name of widget
longest Longest int A 0
mappedWhenM anagéflappedWhenM anage Boolean True
numberStrings NumberStrings int A computed
for NULL
terminated list
pasteBuffer Boolean Boolean False
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackground Background Pixel X tDefaultBackground
rowSpacing Spacing Dimension 2
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
tranglations Tranglations TranslationTable See below
verticalList Boolean Boolean False
width Width Dimension A Enough space to
contain the list
X Position Position 0
y Position Position 0
cal | back All functions on this list are called whenever the not i f y action

is invoked. The call_data argument contains information about
the element selected and is described in detail in the Li st
Cal | backs section.

27

Simple Widgets

r owSpaci ng

def aul t Col utms

f ont

f ont Set

f or ceCol ums

f or eground

i nt er nal Hei ght

i nternal Wdth

list

| ongest

nunber Stri ngs

past eBuf f er

vertical Li st

List Actions

The amount of space, in pixels, between each of the rows and
columnsin thelist.

The default number of columns. This value is used when neither
the width nor the height of the List widget is specified or when
f or ceCol unms isTr ue.

The text font to use when displaying the |i st, when the
i nt ernati onal resourceisf al se.

The text font set to use when displaying the | i st, when the
i nt ernati onal resourceistrue.

Forces the default number of columns to be used regardless of the
List widget's current size.

A pixel value which indexes the widget's colormap to derive the
color used to paint the text of thelist elements.

The margin, in pixels, between the edges of the list and the
corresponding edge of the List widget's window.

An aray of text strings displayed in the List widget. If
nunber St ri ngs is zero (the default) then the | i st must be
NULL terminated. If a value is not specified for the | i st , then
number St ri ngs isset to 1, and the name of the widget is used
asthel i st,and| ongest isset to the length of the name of the
widget. The | i st isused in place, and must be available to the
List widget for thelifetime of thiswidget, or until it is changed with
Xt Set Val ues or XawLi st Change.

Specifies the width, in pixels, of the longest string in the current
list. The List widget will compute this value if zero (the default)
is specified. If this resource is set by hand, entries longer than this
will be clipped to fit.

The number of strings in the current list. If a value of zero
(the default) is specified, the List widget will compute it. When
computing the number of strings the List widget assumes that the
I'i st isNULL terminated.

If this resource is set to Tr ue then the name of the currently
selected list element will be put into CUT_BUFFER_O.

If this resource is set to Tr ue then the list elements will be
presented in column major order.

The List widget supports the following actions:

 Highlighting and unhighlighting the list element under the pointer with Set and Unset

28

Simple Widgets

 Processing application callbackswith Not i fy

Thefollowing is the default trand ation table used by the List Widget:

<Bt n1Down>, <Bt n1Up>: Set () Notify()

Thefull list of actions supported by List widget is:

Set () Sets the list element that is currently under the pointer. To inform the
user that this element is currently set, it is drawn with foreground and
background colors reversed. If this action is called when there is no list
element under the cursor, the currently set element will be unset.

Unset () Cancelsthe set state of the element under the pointer, and redrawsit with
normal foreground and background colors.

Not i fy() Callsall callbacksonthe List widget's callback list. Information about the

currently selected list element is passed in the call_data argument (see
Li st Cal | backs below).

List Callbacks

All procedures on the List widget's callback list will have a XawLi st Ret ur nSt r uct passed to them
ascall_data. The structure is defined in the List widget's application header file.

typedef struct _XawLi stReturnStruct {

String string; /* string shown in the list. */
int list_index; /* index of the item selected. */
} XawlLi st ReturnStruct;

Note

Thelist_indexitem used to be called simply index. Unfortunately, this name collided with aglobal
name defined on some operating systems, and had to be changed.

Changing the List

To changethelist that is displayed, use XawLi st Change.

voi d XawLi st Change(w, |ist, |longest, resize);
w Specifiesthe List widget.
list Specifies the new list for the List widget to display.

29

Simple Widgets

nitems Specifies the number of itemsin thelist. If avalue lessthan 1 is specified,
list must be NULL terminated, and the number of items will be calculated
by the List widget.

longest Specifies the length of the longest item in the list in pixels. If avalue less
than 1 is specified, the List widget will calculate the value.

resize SpecifiesaBoolean valuethat if Tr ue indicatesthat the List widget should
try to resize itself after making the change. The constraints of the List
widget's parent are always enforced, regardless of the value specified here.

XawLi st Change will unset al list elements that are currently set beforethelist is actually changed.

The list is used in place, and must remain usable for the lifetime of the List widget, or until list has been
changed again with this function or with Xt Set Val ues.

Highlighting an Item
To highlight an item in the list, use XawLi st Hi ghl i ght .
void XawLi stHighlight(w, item;
w Specifiesthe List widget.
item Specifies an index into the current list that indicates the item to be highlighted.

Only oneitem can be highlighted at atime. If anitemisalready highlightedwhen XawLi st Hi ghl i ght
is called, the highlighted item is unhighlighted before the new item is highlighted.

Unhighlighting an Item
To unhighlight the currently highlighted item in the list, use XawLi st Unhi ghl i ght .
voi d XawLi st Unhi ghlight(w);

w Specifiesthe List widget.

Retrieving the Currently Selected ltem

Toretrieve the list element that is currently set, use XawlLi st ShowCur r ent .
XawLi st Ret urnStruct *XawlLi st ShowCurrent (w);
w Specifiesthe List widget.

XawLi st ShowCur r ent returns a pointer to an XawLi st Ret ur nSt r uct structure, containing the
currently highlighted item. If the value of the index member is XAW_LIST_NONE, the string member
isundefined, and no item is currently selected.

Restrictions

Many programmers create a “scrolled list” by putting a List widget with many entries as a child of a
Viewport widget. The List continues to create awindow as big as its contents, but that big window isonly
visible where it intersects the parent Viewport's window. (I.e., it is“clipped.”)

30

Simple Widgets

While thisis a useful technique, there is a serious drawback. X does not support windows above 32,767
pixelsin width or height, but this height limit will be exceeded by aList'swindow when the List has many
entries (i.e., with a 12 point font, about 3000 entries would be too many.)

Panner Widget

Application header file <X11/ Xaw Panner. h>
Cl ass header file <X11/ Xaw Panner P. h>

C ass panner Wdget d ass

Cl ass Nanme Panner

Supercl ass Sinpl e

A Panner widget isarectangle, called the“canvas,” on which another rectangle, the“ slider,” movesin two
dimensions. It is often used with a Porthole widget to move, or “scroll,” athird widget in two dimensions,
inwhich case the dlider's size and position gives feedback asto what portion of the third widget isvisible.

The slider may be scrolled around the canvas by pressing, dragging, and releasing Buttonl; the default
trandation also enables scrolling via arrow keys and some other keys. While scrolling is in progress,
the application receives notification through callback procedures. Notification may be done either
continuously whenever the slider moves or discretely whenever the slider has been given anew location.

Resources
When creating a Panner widget instance, the following resources are retrieved from the argument list or
from the resource database:
Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
allowOff AllowOff Boolean False
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgroun(ij
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixmaﬂ)
backgroundStipple | BackgroundStipple String NULL
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
canvasHeight CanvasHeight Dimension 0

31

Simple Widgets

Name Class Type Notes Default Value
canvasWidth Canvaswidth Dimension 0
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
defaultScale DefaultScale Dimension 8
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel XtDefaultForeground
height Height Dimension A dependson
orientation
internal Space Internal Space Dimension 4
international International Boolean C False
lineWidth LineWidth Dimension 0
mappedWhenM anagéflappedwWhenManaged Boolean True
pointerColor Foreground Pixel X tDefaultForeground
pointerColorBackground Background Pixel X tDefaultBackground
reportCallback ReportCallback Callback NULL
resize Resize Boolean True
rubberBand RubberBand Boolean False
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
shadowCol or ShadowColor Pixel X tDefaultForeground
shadowThickness | ShadowThickness Dimension 2
dliderX SliderX Position 0
sliderY SliderY Position 0
dliderHeight SliderHeight Dimension 0
sliderWidth SliderWidth Dimension 0
translations Trangdations TrandationTable See below
width Width Dimension A dependson
orientation
X Position Position 0
y Position Position 0
al | owOX f Whether to allow the edges of the dider to go off the edges of the

backgroundSti ppl e

canvasHei ght

canvasW dt h

canvas.

The name of a bitmap pattern to be used as the background for the

area representing the canvas.

The size of the canvas.

32

Simple Widgets

def aul t Scal e

f oreground

i nt er nal Space

| i neWdth

report Cal | back

resi ze

r ubber Band

shadowCol or

shadowThi ckness

sliderX
sliderY
sl i der Hei ght
sliderWdth

Panner Actions

The percentage size that the Panner widget should have relative to
the size of the canvas.

A pixel value which indexes the widget's colormap to derive the
color used to draw the dlider.

The width of internal border in pixels between adlider representing
the full size of the canvas and the edge of the Panner widget.

The width of the lines in the rubberbanding rectangle when
rubberbanding is in effect instead of continuous scrolling. The
defaultisO.

All functions on this callback list are caled when the noti fy
action isinvoked. Seethe Panner Act i ons section for details.

Whether or not to resize the panner whenever the canvas size is
changed so that the def aul t Scal e is maintained.

Whether or not scrolling should be discrete (only moving a
rubberbanded rectangle until the scrolling is done) or continuous
(moving the dlider itself). This controls whether or not the nove
action procedure also invokesthe not i f y action procedure.

The color of the shadow underneath the slider.

The width of the shadow underneath the dlider.

The location of the slider in the coordinates of the canvas.

The size of the dlider.

The actions supported by the Panner widget are:

start ()

stop()

abort ()

nmove()

page(xanount ,yanount)

This action begins movement of the slider.
This action ends movement of the dlider.

This action ends movement of the dider and restores it to the
position it held when the st ar t action wasinvoked.

This action moves the outline of the dlider (if the r ubber Band
resourceisTrue) or thedlider itself (by invokingthenot i f y action
procedure).

This action moves the slider by the specified amounts. The format
for the amountsisasigned or unsigned floating-point number (e.g.,
+1.0 or -.5) followed by either p indicating pages (slider sizes), or
¢ indicating canvas sizes. Thus, page(+0,+.5p) represents vertical

33

Simple Widgets

movement down one-half the height of the slider and page(0,0)
represents moving to the upper left corner of the canvas.

noti fy() This action informs the application of the slider's current position
by invoking the r eport Cal | back functions registered by the
application.

set (what ,val ue) This action changes the behavior of the Panner. The what argument

must currently bethestringr ubber band and controlsthe value of
the r ubber Band resource. The val ue argument may have one
of thevalueson, of f, ort oggl e.

The default bindings for Panner are;

<Bt n1Down>: start()

<Bt n1Moti on>: nove()

<Bt nl1Up>: notify() stop()

<Bt n2Down>: abort ()
<Key>KP_Ent er: set (rubberband, toggl e)
<Key>space: page(+1p, +1p)
<Key>Del et e: page(-1p, -1p)
<Key>BackSpace: page(-1p, -1p)
<Key>Left: page(-.5p, +0)
<Key>Ri ght: page(+. 5p, +0)
<Key>Up: page(+0, -.5p)
<Key>Down: page(+0, +. 5p)
<Key>Hone: page(0, 0)

Panner Callbacks

The functions registered on ther epor t Cal | back list areinvoked by thenot i f y action asfollows:
voi d ReportProc(panner, client_data, report);

panner Specifies the Panner widget.

panner Specifies the client data.

panner Specifies a pointer to an XawPanner Report structure containing the location and size of
the dider and the size of the canvas.

Repeater Widget

Application header file <X11/ Xaw Repeater. h>

Cl ass header file <X11/ Xaw RepeaterP. h>

34

Simple Widgets

Cl ass repeater Wdget Cl ass

Cl ass Name Repeater

Super cl ass Commrand

The Repeater widget is a subclass of the Command widget; see the Command documentation for details.
The difference is that the Repeater can call its registered callbacks repeatedly, at an increasing rate. The
default translation does so for the duration the user holds down pointer button 1 while the pointer is on

the Repeater.

Resources

When creating a Repeater widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgrounqi
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixmaﬂ)
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's Colormap
cornerRoundPercentCornerRoundPercent Dimension 25
cursor Cursor Cursor None
cursorName Cursor String NULL
decay Decay Int 5
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar awTextEncoding8bit
flash Boolean Boolean False
font Font XFontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel X tDefaultForeground
height Height Dimension A graphic
height + 2 *
i nt er nal Hei ght

35

Simple Widgets

Name Class Type Notes Default Value
highlightThickness Thickness Dimension A 2 (0 if Shaped)
initialDelay Delay Int 200
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
interna Width Width Dimension 4
international International Boolean C False
justify Justify Justify XtdustifyCenter
(center)
|abel L abel String name of widget
leftBitmap LeftBitmap Bitmap None
mappedWhenM anagétlappedwWhenManaged Boolean True
minimumDelay MinimumDelay Int 10
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackground Background Pixel X tDefaultBackground
repeatDelay Delay Int 50
resize Resize Boolean True
screen Screen Pointer R Parent's Screen
sensitive Sensitive Boolean True
shapeStyle ShapeStyle ShapeStyle Rectangle
startCallback StartCallback Callback NULL
stopCallback StopCallback Callback NULL
tranglations Tranglations TranslationTable See below
width Width Dimension A graphic width + 2 *
i nternal Wdth
X Position Position 0
y Position Position 0

\" Resource Descriptions

decay

flash

i nitial Del ay

m ni munDel ay

r epeat Del ay

The number of milliseconds that should be subtracted from each
succeeding interval while the Repeater button is being held down
until the interval has reached m ni nunDel ay milliseconds.

Whether or not to flash the Repeater button whenever thetimer goes

off.

The number of milliseconds between the beginning of the Repeater
button being held down and the first invocation of the cal | back
function.

The minimum time between callbacks in milliseconds.

The number of milliseconds between each callback after the first

(minus an increasing number of decays).

36

Simple Widgets

start Cal | back Thelist of functionstoinvoke by thest ar t action (typically when
the Repeater button is first pressed). The callback data parameter
issetto NULL.

st opCal | back Thelist of functionsto invoke by the st op action (typically when
the Repeater button isreleased). The callback data parameter is set
to NULL.

Repeater Actions

The Repeater widget supports the following actions beyond those of the Command button:

start () Thisinvokesthefunctionsonthest art Cal | back andcal | back lists
and setsatimer togo off ini ni ti al Del ay milliseconds. The timer will
cause the cal | back functions to be invoked with increasing frequency
until the st op action occurs.

st op() This invokes the functions on the st opCal | back list and prevents any
further timers from occurring until the next st art action.

The following are the default trandation bindings used by the Repeater widget:

<Ent er W ndow>: hi ghlight ()
<LeaveW ndow>: unhi ghlight ()
<Bt n1Down>: set() start()
<Bt n1Up>: stop() unset()

Scrollbar Widget

Application header file <X11/ Xaw/ Scr ol | bar . h>
Cl ass header file <X11/ Xaw/ Scrol | bar P. h>
d ass scrol | bar Wdget d ass

Cl ass Name Scrol | bar

Super cl ass Si npl e

A Scrollbar widget is arectangle, called the “canvas,” on which another rectangle, the “thumb,” movesin
one dimension, either vertically or horizontally. A Scrollbar can be used alone, as a value generator, or it
can be used within a composite widget (for example, a Viewport). When a Scrollbar is used to move, or
“scroll,” the contents of another widget, the size and the position of the thumb usually give feedback as
to what portion of the other widget's contents are visible.

Each pointer button invokes aspecific action. Pointer buttons 1 and 3 do not movethethumb automatically.
Instead, they return the pixel position of the cursor on the scroll region. When pointer button 2 is clicked,
the thumb moves to the current pointer position. When pointer button 2 is held down and the pointer is
moved, the thumb follows the pointer.

The pointer cursor in the scroll region changes depending on the current action. When no pointer buttonis
pressed, the cursor appears as a double-headed arrow that points in the direction that scrolling can occur.
When pointer button 1 or 3is pressed, the cursor appears as a single-headed arrow that pointsin thelogical

37

Simple Widgets

direction that the thumb will move. When pointer button 2 is pressed, the cursor appears as an arrow that
points to the top or the left of the thumb.

When the user scrolls, the application receives notification through callback procedures. For both discrete
scrolling actions, the callback returns the Scrollbar widget, the client_data, and the pixel position of the
pointer when the button was released. For continuous scrolling, the callback routine returns the scroll bar
widget, the client data, and the current relative position of the thumb. When the thumb is moved using
pointer button 2, the callback procedure is invoked continuously. When either button 1 or 3 is pressed,
the callback procedure is invoked only when the button is released and the client callback procedure is
responsible for moving the thumb.

Resources

When creating a Scrollbar widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgroun(ij
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixmaﬂ)
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
colormap Colormap Colormap parent's Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel X tDefaultForeground
height Height Dimension A depends on
orientation
insensitiveBorder Insensitive Pixmap GreyPixmap
international International Boolean C False
jumpProc Callback XtCallbackList NULL
length Length Dimension 1
mappedWhenM anagéflappedwWhenManage Boolean True
minimumThumb | MinimumThumb Dimension 7
orientation Orientation Orientation XtorientVertical
(vertical)
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackground Background Pixel X tDefaultBackground
screen Screen Screen R parent's Screen
scrol|DCursor Cursor Cursor XC_sb _down_arrow

38

Simple Widgets

Name Class Type Notes Default Value
scrollHCursor Cursor Cursor X/C_sb_h double_arraw
scrollL Cursor Cursor Cursor XC _sb left_arrow

scrollProc Callback XtCallbackList NULL
scrollRCursor Cursor Cursor XC_sb right_arrow
scrollUCursor Cursor Cursor XC_sb up_arrow
scrollV Cursor Cursor Cursor XC _sb v_arrow

sensitive Sensitive Boolean True

shown Shown Float 0.0

thickness Thickness Dimension 14
thumb Thumb Bitmap GreyPixmap
thumbProc Callback XtCallbackList NULL
topOf Thumb TopOfThumb Float 0.0
tranglations Tranglations TranslationTable See below
width Width Dimension A dependson
orientation
X Position Position 0
y Position Position 0

f or eground

j unpPr oc

[ength
m ni mumrhunb

orientation

scrol | DCur sor
scrol | HCur sor
scrol | LCur sor

scrol | Proc

scrol | RCur sor

scrol | UCur sor

A pixel value which indexes the widget's colormap to derive the
color used to draw the thumb.

All functions on this callback list are caled when the
Not i f yThunb actionisinvoked. Seethe section called “ Scrollbar
Actions’ for details.

The height of a vertical scrollbar or the width of a horizontal
scrollbar.

The smallest size, in pixels, to which the thumb can shrink.

The orientation is the direction that the thumb will be allowed
to move. This value can be either Xt ori ent Vertical or
XtorientHorizontal.

This cursor is used when scrolling backward in avertical scrollbar.
This cursor is used when a horizontal scrollbar isinactive.
Thiscursor isused when scrolling forward in ahorizontal scrollbar.

All functions on this calback list may be caled when the
Noti fyScroll action is invoked. See the section called
“Scrollbar Actions” for details.

This cursor is used when scrolling backward in a horizontal
scrollbar, or when thumbing a vertical scrollbar.

This cursor is used when scrolling forward in a vertical scrollbar,
or when thumbing a horizontal scrollbar.

39

Simple Widgets

scrol | VCur sor This cursor is used when avertical scrollbar isinactive.

shown Thisis the size of the thumb, expressed as a percentage (0.0 - 1.0)
of the length of the scrollbar.

t hi ckness The width of a vertical scrollbar or the height of a horizontal
scrollbar.

t hunb This pixmap is used to tile (or stipple) the thumb of the scrollbar.

If notiling is desired, then set thisresource to None. Thisresource
will accept either a bitmap or a pixmap that is the same depth as
the window. The resource converter for this resource constructs
bitmaps from the contents of files. (See Converti ng Bit maps
for details.)

t opOf Thunb The location of the top of the thumb, as a percentage (0.0 - 1.0) of
thelength of the scrollbar. Thisresourcewascalledt op inprevious
versions of the Athena widget set. The name collided with the a
Form widget constraint resource, and had to be changed.

Scrollbar Actions

The actions supported by the Scrollbar widget are:

Start Scrol | (value) The possible values are Forward, Backward, or Continuous. This
must be the first action to begin a new movement.

Not i f yScr ol | (value) The possible valuesare Proportional or FullLength. If the argument
to StartScroll was Forward or Backward, NotifyScroll executes
thescr ol | Proc callbacks and passes either; the position of the
pointer, if valueis Proportional, or thefull length of the scroll bar, if
valueis FullLength. If the argument to StartScroll was Continuous,
NotifyScroll returns without executing any callbacks.

EndScrol I () This must be the last action after amovement is complete.
MoveThunb() Repositions the Scrollbar's thumb to the current pointer location.
Not i f yThunmb()\ Callsthe callbacks and passes the relative position of the pointer as

a percentage of the scroll bar length.

The default bindings for Scrollbar are:

<Bt n1Down>: Start Scrol | (Forward)

<Bt n2Down>: Start Scrol | (Continuous) MwveThunb() NotifyThunb()
<Bt n3Down>; Start Scrol | (Backwar d)

<Bt n2Mot i on>: MoveThunb() NotifyThunb()

<Bt nUp>: Noti fyScrol |l (Proportional) EndScroll ()

Examples of additional bindings a user might wish to specify in aresource file are:

*Scrol | bar. Transl ations: \\
~Met a<Key>space: StartScrol |l (Forward) NotifyScroll (Full Length) \\n\\

40

Simple Widgets

Met a<Key>space: Start Scrol | (Backward) NotifyScroll (FullLength) \\n\\
EndScrol I ()

Scrollbar Callbacks

There aretwo callback lists provided by the Scrollbar widget. The procedural interface for these functions
is described here.

The calling interface to thescr ol | Pr oc callback procedureis:

void ScrollProc(scrollbar, <client_data, position);

scrollbar Specifies the Scrollbar widget.
client_data Specifies the client data.
position Specifies apixel position in integer form.

Thescr ol | Proc calback isused for incremental scrolling andiscalled by theNot i f yScr ol | action.
The position argument is a signhed quantity and should be cast to an int when used. Using the default
button bindings, button 1 returns a positive value, and button 3 returns a negative value. In both cases, the
magnitude of the value is the distance of the pointer in pixels from the top (or left) of the Scrollbar. The
value will never be greater than the length of the Scrollbar.

The calling interface to thej unpPr oc callback procedureis:

void JumpProc(scrollbar, «client_data, percent _ptr);

scrollbar Specifiesthe ID of the scroll bar widget.
client_data Specifies the client data.
percent_ptr Specifies the floating point position of the thumb (0.0 — 1.0).

The j unpPr oc calback is used to implement smooth scrolling and is called by the Not i f yThunb
action. Percent_ptr must be cast to a pointer to float before use; i.e.

float percent = *(float*)percent _ptr;
With the default button bindings, button 2 moves the thumb interactively, and thej unpPr oc iscalled on
each new position of the pointer, whilethe pointer button remainsdown. Theval ue specified by percent_ptr

is the current location of the thumb (from the top or left of the Scrollbar) expressed as a percentage of
the length of the Scrollbar.

Convenience Routines

To set the position and length of a Scrollbar thumb, use

voi d Xawscrol | bar Set Thunb(w, top, shown);

w Specifies the Scrollbar widget.
top Specifies the position of the top of the thumb as a fraction of the length of
the Scrollbar.

41

Simple Widgets

shown Specifies the length of the thumb as a fraction of the total length of the
Scrollbar.

XawScr ol | bar Thunb moves the visible thumb to a new position (0.0 — 1.0) and length (0.0 — 1.0).
Either the top or shown arguments can be specified as -1.0, in which case the current value is left
unchanged. Values greater than 1.0 are truncated to 1.0.

If called fromj unpProc, XawScr ol | bar Set Thunb has no effect.

Setting Float Resources

Theshown andt opOf Thunb resources are of type float. These resources can be difficult to get into an
argument list. Thereasonisthat C performs an automatic cast of thefloat value to an integer value, usually
truncating the important information. The following code fragment is one portable method of getting a
float into an argument list.

top = 0.5;
if (sizeof(float) > sizeof (XtArgval)) {
/*

* |f a float is larger than an XtArgVal then pass this
* resource value by reference.

*/
Xt Set Arg(args[0], XtNshown, &top);
}
el se {
/*

* Convince C not to performan automatic conversion, which
* would truncate 0.5 to O.
*/
XtArgVal * | _top = (XtArgVval *) ⊤
Xt Set Arg(args[0], XtNshown, *| _top);
}

Simple Widget

Application Header file <Xaw Si nmpl e. h>

Cl ass Header file <Xaw Si npl eP. h>

C ass sinpl eWdgetd ass

Cl ass Nanme Sinple

Supercl ass Core

The Simple widget is not very useful by itself, asit has no semantics of its own. It main purpose isto be

used as a common superclass for the other simple Athena widgets. This widget adds six resources to the
resource list provided by the Core widget and its superclasses.

42

Simple Widgets

Resources

When creating a Simple widget instance, the following resources are retrieved from the argument list or
from the resource database;
Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgroun(ij
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixmaﬂ)
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension 0
insensitiveBorder Insensitive Pixmap GreyPixmap
international International Boolean C False
mappedWhenM anagétlappedwWhenManaged Boolean True
pointerColor Foreground Pixel X tDefaultForeground
pointerColorBackground Background Pixel X tDefaultBackground
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
translations Tranglations TrandationTable NULL
width Width Dimension 0
X Position Position 0
y Position Position 0

StripChart Wi

dget

Application Header file <Xaw StripChart. h>

Cl ass Header file <Xaw Stri pCharP. h>

d ass

stri pChart Wdget d ass

43

Simple Widgets

Cl ass Name StripChart

Supercl ass Sinmpl e

The StripChart widget is used to provide aroughly real time graphical chart of asingle value. For example,
it isused by the common client program x| oad to provide agraph of processor load. The StripChart reads
data from an application, and updates the chart at the updat e interval specified.

Resources

When creating a StripChart widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgroun(ij
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixmaﬂ)
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel X tDefaultForeground
getValue Callback XtCallbackList NULL
height Height Dimension 120
highlight Foreground Pixel X tDefaultForeground
insensitiveBorder Insensitive Pixmap GreyPixmap
international International Boolean C False
jumpScroll JumpScroll int A half the width
of the widget
mappedWhenM anagétlappedwWhenManaged Boolean True
minScale Scale int 1
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackground Background Pixel X tDefaultBackground
screen Screen Pointer R Parent's Screen
sensitive Sensitive Boolean True

Simple Widgets

Name Class Type Notes Default Value
tranglations Tranglations TranslationTable NULL
update Interval int 10
width Width Dimension 120
X Position Position 0
y Position Position 0

f or eground

get Val ue

hi ghl i ght

junpScrol |

m nScal e

updat e

A pixel value which indexes the widget's colormap to derive the color
that will be used to draw the graph.

A list of callback functions to call every updat e seconds. This list
should contain one function, which returns the value to be graphed by
the StripChart widget. The following section describes the procedural
interface. Behavior when this list has more than one function is
undefined.

A pixel value which indexes the widget's colormap to derive the color
that will be used to draw the scale lines on the graph.

When the graph reaches the right edge of the window it must be
scrolled to the left. This resource specifies the number of pixelsit will
jump. Smooth scrolling can be achieved by setting this resource to 1.

The minimum scale for the graph. The number of divisions on the
graph will always be greater than or equal to thisvalue.

The number of seconds between graph updates. Each update is
represented onthegraph asal pixel wideline. Every updat e seconds
the get Val ue procedure will be used to get a new graph point, and
this point will be added to the right end of the StripChart.

Getting the StripChart Value

The StripChart widget will call the application routine passed to it as the get Val ue callback function
every updat e seconds to obtain another point for the StripChart graph.

The calling interface for the get Val ue calback is:

voi d(*get Val ueProc) (w,

client_data, value);

w Specifies the StripChart widget.
client_data Specifies the client data.
value Returns a pointer to a double. The application should set the address

pointed to by this argument to a double containing the value to be
graphed on the StripChart.

This function is used by the StripChart to call an application routine. The routine will pass the value to be

graphed back to the the StripChart in the val ue field of this routine.

Toggle Widget

45

Simple Widgets

Application Header file <Xaw Toggl e. h>
Cl ass Header file <Xaw Toggl eP. h>

d ass t oggl eW dget Cl ass

Cl ass Name Toggl e

Super cl ass Conmmand

The Toggle widget is an area, often rectangular, that displays a graphic. The graphic may be atext string
containing multiple lines of charactersin an 8 bit or 16 bit character set (to be displayed with afont), or in
amulti-byte encoding (for use with a fontset). The graphic may also be a bitmap or pixmap.

Thiswidget maintainsaBool ean state (e.g. True/False or On/Off) and changes state whenever it is sel ected.
When the pointer is on the Toggle widget, the Toggle widget may become highlighted by drawing a
rectangle around its perimeter. This highlighting indicates that the Toggle widget is ready for selection.
When pointer button 1 is pressed and released, the Toggle widget indicates that it has changed state by
reversing its foreground and background colors, anditsnot i f y actionisinvoked, calling all functionson
its callback list. If the pointer is moved off of the widget before the pointer button is released, the Toggle
widget reverts to its previous foreground and background colors, and releasing the pointer button has no
effect. This behavior allows the user to cancel the operation.

Toggle widgets may also be part of a“radio group.” A radio group isalist of at |east two Toggle widgets
in which no more than one Toggle may be set at any time. A radio group isidentified by the widget ID of
any one of its members. The convenience routine XawToggl eGet Cur r ent will return information
about the Toggle widget in the radio group.

Toggle widget state is preserved across changes in sensitivity.

Resources
When creating a Toggle widget instance, the following resources are retrieved from the argument list or
from the resource database:
Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgroun(F
backgroundPixmap Pixmap Pixmap (tUnspecifiedPixmaﬂ)
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's Colormap
cornerRoundPercentCornerRoundPercent Dimension 25
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar awTextEncoding8bit

46

Simple Widgets

Name Class Type Notes Default Value
font Font XFontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel X tDefaultForeground
height Height Dimension A graphic
height + 2 *
i nt er nal Hei ght
highlightThickness Thickness Dimension A 2 (0 if Shaped)
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
internal Width Width Dimension 4
international International Boolean C False
justify Justify Justify XtdustifyCenter
(center)
|abel L abel String name of widget
leftBitmap LeftBitmap Bitmap None
mappedWhenM anagéflappedwWhenManaged Boolean True
pointerColor Foreground Pixel X tDefaultForeground
pointerColorBackground Background Pixel X tDefaultBackground
radioData RadioData Pointer Name of widget
radioGroup Widget Widget No radio group
resize Resize Boolean True
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
shapeStype ShapeStyle ShapeStyle Rectangle
state State Boolean Off
translations Trangdations TrandationTable See below
width Width Dimension A graphic width + 2 *
i nternal Wdth
X Position Position 0
y Position Position 0
radi oDat a Specifies the data will be returned by
XawToggl eGet Curr ent when thisis the currently set widget in
theradio group. Thisvalueis also used to identify the Toggle that will
besetby acall to XawToggl eSet Curr ent . Thevalue NULL will
be returned by XawToggl eGet Current if no widget in aradio
group is currently set. Programmers must not specify NULL (or Zero)
asr adi oDat a.
radi oG oup Specifies another Togglewidget that isin the radio group to which this

Togglewidget should be added. A radio group isagroup of at |east two
Toggle widgets, only one of which may be set at atime. If thisvalueis
NULL (the default) then the Toggle will not be part of any radio group

47

Simple Widgets

and can change state without affecting any other Togglewidgets. If the
widget specified in thisresourceis not aready in aradio group then a
new radio group will be created containing these two Toggle widgets.
No Toggle widget can be in multiple radio groups. The behavior of a
radio group of onetoggleisundefined. A converter isregistered which
will convert widget names to widgets without caching.

state Specifies whether the Toggle widget is set (Tr ue) or unset (Fal se).

Toggle Actions

The Toggle widget supports the following actions:

 Switching the Toggle widget between the foreground and background colorswith set andunset and
toggl e

» Processing application callbackswith not i fy

» Switching the internal border between highlighted and unhighlighted states with hi ghl i ght and
unhi ghl i ght

The following are the default trandlation bindings used by the Toggle widget:

<Ent er W ndow>: hi ghl i ght (Al ways)
<LeaveW ndow>: unhi ghl i ght ()
<Bt n1Down>, <Bt n1Up>: toggl e() notify()

Toggle Actions

Thefull list of actions supported by Toggleis.

hi ghl i ght (condition) Displays the internal highlight border in the color (f or egr ound
or background) that contrasts with the interior color of the
Toggle widget. The conditions WhenUnset and Al ways are
understood by this action procedure. If no argument is passed then
WhenUnset isassumed.

unhi ghl i ght () Displays the internal highlight border in the color (f or egr ound
or backgr ound) that matches the interior color of the Toggle
widget.

set () Enters the set state, in which notify is possible. This

action causes the Toggle widget to display its interior in the
foreground color. The label or bitmap is displayed in the
backgr ound color.

unset () Cancels the set state and displays the interior of the Toggle widget
inthebackgr ound color. The label or bitmap is displayed in the
f or egr ound color.

t oggl e() Changes the current state of the Toggle widget, causing to be set
if it was previously unset, and unset if it was previoudly set. If the
widget isto be set, and isin aradio group then this procedure may
unset another Toggle widget causing all routines on its callback list

48

Simple Widgets

to be invoked. The callback routines for the Toggle that is to be
unset will be called before the one that isto be set.

reset() Cancelsany set or hi ghl i ght and displays the interior of the
Togglewidget inthebackgr ound color, with the label displayed
inthef or egr ound color.

notify() When the Toggle widget is in the set state this action calls all
functions in the callback list named by the cal | back resource.
The value of the call_data argument in these callback functionsis
undefined.

When a bitmap of depth greater that one (1) is specified the set(), unset(), and reset() actions have no
effect, since there are no foreground and background colors used in a multi-plane pixmap.

Radio Groups

There are typically two types of radio groups desired by applications. The default trandations for the
Toggle widget implement a "zero or one of many" radio group. This means that there may be no more
than one Toggle widget active, but there need not be any Toggle widgets active.

The other type of radio group is "one of many" and has the more strict policy that there will always
be exactly one radio button active. Toggle widgets can be used to provide this interface with a sight
modification to the trandlation table of each Toggle in the group.

<Ent er W ndow>: hi ghl i ght (Al ways)
<LeaveW ndow>: unhi ghl i ght ()
<Bt n1Down>, <Bt n1Up>: set() notify()

Thistranglation table will not allow any Toggle to be unset except as aresult of another Toggle becoming
set. It isthe application programmer's responsibility to choose an initial state for the radio group by setting
the st at e resource of one of its member widgetsto Tr ue.

Convenience Routines

The following functions allow easy access to the Toggle widget's radio group functionality.

Changing the Toggle's Radio Group.

To enable an application to change the Toggl€'s radio group, add the Toggle to aradio group, or remove
the Toggle from aradio group, use XawToggl eChangeRadi oGr oup.

voi d XawToggl eChangeRadi oG oup(radi o_group);

w Specifies the Toggle widget.

radio_group Specifies any Toggle in the new radio group. If NULL then the
Toggle will be removed from any radio group of which it is a
member.

If aToggleisalready set in the new radio group, and the Toggle to be added is al so set then the previously
set Toggle in the radio group is unset and its callback procedures are invoked. Finding the Currently
selected Toggle in aradio group of Toggles

49

Simple Widgets

Tofind thecurrently selected Toggleinaradio group of Togglewidgetsuse XawToggl eGet Current.

Xt Poi nt er XawToggl eGet Current (XawToggl eGet Current (radi o_group),
radi o_group);

radio_group Specifies any Toggle widget in the radio group.

The value returned by thisfunction isther adi oDat a of the Toggle in this radio group that is currently
set. The default value for r adi oDat a isthe name of that Toggle widget. If no Toggleis set in theradio
group specified then NULL is returned. Changing the Toggle that is set in aradio group.

To change the Toggle that is currently set in aradio group use XawToggl eSet Cur rent .
voi d XawToggl eSet Current (radi o_data), radio_group, radio_data);
radio_group Specifies any Toggle widget in the radio group.

radio_data Specifiesther adi oDat a identifying the Toggle that should be set
in the radio group specified by the radio_group argument.

XawToggl eSet Cur r ent locates the Toggle widget to be set by matching radio_data against the

r adi oDat a for each Toggle in the radio group. If none match, XawToggl eSet Cur r ent returns
without making any changes. If more than one Toggle matches, XawToggl eSet Cur r ent will choose
aToggleto set arbitrarily. If this causes any Toggle widgets to change state, al routines in their callback
lists will be invoked. The callback routines for a Toggle that is to be unset will be called before the one
that isto be set. Unsetting all Togglesin aradio group.

To unset all Toggle widgetsin aradio group use XawToggl eUnset Current .

voi d XawToggl eUnset Current (XawToggl eUnset Current (radi o_group),
radi o_group);

radio_group Specifies any Toggle widget in the radio group.

If this causes a Toggle widget to change state, all routines on its callback list will be invoked.

50

Chapter 4. Menus

The Athena widget set provides support for single paned non-hierarchical popup and pulldown menus.
Since menus are such a common user interface tool, support for them must be provided in even the most
basic widget sets. In menuing as in other areas, the Athena Widget Set provides only basic functionality.

Menus in the Athena widget set are implemented as a menu container (the SimpleMenu widget) and a
collection of objects that comprise the menu entries. The SimpleMenu widget isitself adirect subclass of
the OverrideShell widget class, so no other shell is necessary when creating amenu. The managed children
of a SimpleMenu must be subclasses of the Sme (Simple Menu Entry) object.

The Athenawidget set provides three classes of Sme objects that may be used to build menus.

Sme The base class of all menu entries. It may be used as a menu entry itself to provide blank
spacein amenu. "Sme" means "Simple Menu Entry."

SmeBSB This menu entry provides a selectable entry containing a text string. A bitmap may also be
placed in the left and right margins. "BSB" means "Bitmap String Bitmap."

SmelLine This menu entry provides an unselectable entry containing a separator line.

The SimpleMenu widget informs the window manager that it should ignore its window by setting the
Override Redirect flag. Thisis the correct behavior for the press-drag-release style of menu
operation. If click-move-click or "pinable” menus are desired it is the responsibility of the application
programmer, using the SimpleMenu resources, to inform the window manager of the menu.

To alow easy creation of pulldown menus, a MenuButton widget is also provided as part of the Athena
widget set.

Using the Menus

The default configuration for the menus is press-drag-release. The menus will typically be activated by
clicking a pointer button while the pointer is over a MenuButton, causing the menu to appear in a fixed
location relative to that button; thisisapul | down menu. Menus may also be activated when a specific
pointer and/or key sequence is used anywhere in the application; thisisapopup menu (e.g. clicking Ctrl-
<pointer button 1> in the common application xt er m). In this case the menu should be positioned under
the cursor. Typically menuswill be placed so the pointer cursor ison the first menu entry, or the last entry
selected by the user.

The menu remains on the screen as long as the pointer button is held down. Moving the pointer will
highlight different menu items. If the pointer leaves the menu, or moves over an entry that cannot be

selected then no menu entry will highlighted. When the desired menu entry has been highlighted, releasing
the pointer button removes the menu, and causes any mechanism associated with this entry to be invoked.

SimpleMenu Widget

Application Header file <X11/Xaw Si mpl eMenu. h>

51

Menus

Cl ass Header file <X11/Xaw Si nmpl eMenP. h>

d ass

si mpl eMenuW dget d ass

Cl ass Nanme Sinmpl eMenu

Supercl ass Overri deShel |

The SimpleMenu widget isacontainer for the menu entries. It isadirect subclass of shell, and is should be
created with Xt Cr eat ePopupShel | ,not Xt Cr eat eManagedW dget . Thisisthe only part of the
menu that actually is associated with awindow. The SimpleMenu serves as the glue to bind the individual
menu entries together into a menu.

Resources

The resources associated with the SimpleMenu widget control aspects that will affect the entire menu.

3

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
allowShellResize | AllowShellResize Boolean True
background Background Pixel (tDefauItBackgrounqi
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixmaﬂ)
backingStore BackingStore BackingStore see below
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
bottomMargin VerticalMargins Dimension 0
children ReadOnly WidgetList R NULL
reatePopupChil dPrdgreatePopupChildProc Function NULL
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor None
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
geometry Geometry String NULL
height Height Dimension Enough space to
contain al entries
label Label String NULL
labelClass LabelClass Pointer SmeBSBObjectClass
nappedwWhenM anagilappedwWhenManaged Boolean True
menuOnScreen MenuOnScreen Boolean True
numChildren ReadOnly Cardina R 0

52

Menus

Name Class Type Notes Default Value
overrideRedirect | OverrideRedirect Boolean True
popdownCallback Callback XtCallbackList NULL
popupCallback Callback XtCallbackList NULL
popupOnEntry PopupOnEntry Widget A Label or first entry
rowHeight RowHeight Dimension 0
saveUnder SaveUnder Boolean False
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
topMargin VerticalMargins Dimension 0
trandations Tranglations TrandationTable See below
visual Visual Visual CopyFromParent
width Width Dimension Width of
widest entry
X Position Position 0
y Position Position 0

backi ngSt or e

bot t onmvar gi n

topMargin

cur sor

geometry

| abel

| abel C ass

menuOnScr een

overrideRedirect

Determines what type of backing store will be used for the menu.
Legal vaues for this resource are Not Usef ul , WhenMapped,
and Al ways. These values are the backing-store integers defined
in <X11/X.h>. If def aul t is specified (the default behavior) the
server will use whatever it thinksis appropriate.

The amount of space between the top or bottom of the menu and
the menu entry closest to that edge.

The shape of the mouse pointer whenever it isin this widget.

If thisresourceis specified it will overridetheX, y, width and height
of thiswidget. The format of this string is [<width>x<height>][{+
-} <xoffset> { + -} <yoffset>].

This label will be placed at the top of the SimpleMenu, and may
not be highlighted. The name of the label object is menuLabel .
Using thisnameit ispossibleto modify thelabel'sattributesthrough
the resource database. When the label is created, the | abel is
hard coded to thevalue of | abel ,andj usti fy ishard coded as
Xt JustifyCenter.

Specifies the type of Sme object created as the menu label.
If the menu is automatically positioned under the cursor with the
XawPosi t i onSi mpl eMenu action, and this resource is Tr ue,

then the menu will always be fully visible on the screen.

Determines the value of the override redirect attribute of the
SimpleMenu's window. The override redirect attribute of a

53

Menus

popdownCallback

popupCallback

popupOnEnt ry

r owHei ght

saveUnder

SimpleMenu Actions

window determines whether or not a window manager may
interpose itself between this window and the root window of the
display. For more information see the Interclient Communications
Conventions Manual.

These callback functions are called by the Xt Intrinsics whenever
the shell is popped up or down (See (XT for details).

The XawPosi ti onSi npl eMenu action will, by default, popup
the SimpleMenu with its label (or first entry) directly under the
pointer. To popup the menu under another entry, set this resource
to the menu entry that should be under the pointer, when the menu
is popped up. This allows the application to offer the user a default
menu entry that can be selected with out moving the pointer.

If this resources is zero (the default) then each menu entry will be
givenitsdesired height. If thisresource has any other value then all
menu entries will be forced to ber owHei ght pixels high.

If this is Tr ue then save unders will be active on the menu's
window.

The SimpleMenu widget supports the following actions:

» Switching the entry under the mouse pointer between the foreground and background colors with

hi ghl i ght and unhi ghl i ght

» Processing menu entry callbackswithnot i fy

The following are the default trandlation bindings used by the SimpleMenu widget:

<Ent er W ndow>: hi ghlight ()

<LeaveW ndow>:

<Bt n\Wbt i on>:

unhi ghli ght ()
hi ghl i ght ()

<Bt nUp>: MenuPopdown() notify() unhighlight()

The user can pop down the menu without activating any of the callback functions by releasing the pointer
button when no menu item is highlighted.

Thefull list of actions supported by SimpleMenu is:

hi ghl i ght ()

unhi ghl i ght ()

Highlight the menu entry that is currently under the pointer. Only
aitem that is highlighted will be notified when thenot i fy action
is invoked. The look of a highlighted entry is determined by the
menu entry.

Unhighlights the currently highlighted menu item, and returnsiit to
its normal look.

Menus

notify() Notifies the menu entry that is currently highlighted that is has
been selected. It is the responsibility of the menu entry to take the
appropriate action.

MenuPopdown(menu) Thisaction is defined in (XT.

Positioning the SimpleMenu

If the SimpleMenu widget is to be used as a pulldown menu then the MenuButton widget, or some other
outside means should be used to place the menu when it is popped up.

If popup menus are desired it will be necessary to add the XawPositi onSi npl eMenu and
MenuPopup actions to the trandation table of the widget that will be popping up the menu. The
MenuPopup action is described in (XT. XawPosi ti onSi npl eMenu is a global action procedure
registered by the SimpleMenu widget when the first one is created or the convenience routine
XawSi mpl eMenuAddd obal Acti ons iscalled.

Trangdlation writers should be aware that Xt does not register grabs on “don't care” modifiers, and therefore
the left hand side of the production should be written to exclude unspecified modifiers. For example these
are the trand ations needed to popup some of xt er m s menus:

ICtrl <Bt nlDown>: XawPositionSi npl eMenu(xterm MenuPopup(xtern)
I Ctrl <Bt n2Down>: XawPosi ti onSi npl eMenu(nodes) MenuPopup(nodes)

XawPosi ti onSi mpl eMenu(menu)The XawPosi ti onSi npl eMenu routine will search for the
menu name passed to it using Xt NaneToW dget starting with
the widget invoking the action as the reference widget. If it is
unsuccessful it will continue up the widget tree using each of
the invoking widget's ancestors as the reference widget. If it is
still unsuccessful it will print a warning message and give up.
XawPosi ti onSi npl eMenu will position the menu directly
under the pointer cursor. The menu will be placed so that the pointer
cursor is centered on the entry named by the popupOnEnt ry
resource. If the menuOnScr een resourceis Tr ue then the menu
will always be fully visible on the screen.

Convenience Routines

Registering the Global Action Routines
The XawPosi ti onSi npl eMenu action routine may often be invoked before any menus have been
created. This can occur when an application uses dynamic menu creation. In these cases an application
will need to register this global action routine by calling XawSi npl eMenuAddd obal Act i ons:
voi d XawSi npl eMenuAddd obal Acti ons(app_con);
app_con Specifies the application context in which this action should be registered.

This function need only be called once per application and must be called before any widget that uses
XawPosi ti onSi nmpl eMenu actionisrealized.

55

Menus

Getting and Clearing the Current Menu Entry
To get the currently highlighted menu entry use XawSi npl eMenuCGet Acti veEntry:
W dget XawSi npl eMenuGet Acti veEntry(w);
w Specifies the SimpleMenu widget.
This function returns the menu entry that is currently highlighted, or NULL if no entry is highlighted.

To clear the SimpleMenu widget's internal information about the currently highlighted menu entry use
XawSi mpl eMenuCl ear Acti veEntry:

W dget XawSi npl eMenud ear ActiveEntry(w);
w Specifies the SimpleMenu widget.
Thisfunction unsetsall internal referencesto the currently highlighted menu entry. It does not unhighlight

or otherwise ater the appearance of the active entry. This function is primarily for use by implementors
of menu entries.

SmeBSB Object

Application Header file <X11/ Xaw SneBSB. h>

Cl ass Header file <X11/ Xaw SmeBSBP. h>

Cl ass snmeBSBhj ect d ass

Cl ass Nane SnmeBSB

Supercl ass Sne

The SmeBSB object isused to create amenu entry that containsastring, and optional bitmapsinitsleft and
right margins. Since each menu entry is an independent object, the application is able to change the font,

color, height, and other attributes of the menu entries, on an entry by entry basis. The format of the string
may either be the encoding of the 8 bit f ont utilized, or inamulti-byte encoding for usewith af ont Set .

Resources

The resources associated with the SmeBSB object are defined in this section, and affect only the single
menu entry specified by this object.

Name Class Type Notes Default Value
ancestorSensitive | AncestorSensitive Boolean D True

56

Menus

Name Class Type Notes Default Value
callback Callback Callback NULL
destroyCallback Callback XtCallbackList NULL
font Font FontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel X tDefaultForeground
height Height Dimension A Font height +
vert Space
international International Boolean C False
justify Justify Justify XtjustifyL eft
label Label String NULL
leftBitmap LeftBitmap Pixmap X tUnspecifiedPixmap
leftMargin leftMargin Dimension 4
rightBitmap RightBitmap Pixmap X tUnspecifiedPixmap
rightMargin rightMargin Dimension 4
sensitive Sensitive Boolean True
vertSpace VertSpace int 25
width Width Dimension A TextWidth
+ margins
callback All callback functions on this list are called when the SimpleMenu notifies this entry
that the user has selected it.
font Thetext font to usewhen displayingthel abel ,whenthei nt er nat i onal resource
isfal se.
fontSet The text font set to use when displaying the | abel , when the i nt er nat i onal
resourceist r ue.
foreground A pixel value which indexesthe SimpleMenu's colormap to derive the foreground col or
of the menu entry'swindow. This color isalso used to render all 1'sin theleft and right
bi t maps. Keep in mind that the SimpleMenu widget will force the width of all menu
entries to be the width of the longest entry.
justify How the label is to be rendered between the left and right margins when the
space is wider than the actual text. This resource may be specified with the values
XtJustifylLeft,XtJustifyCenter,orXtJustifyRi ght.Whenspecifying
thejustification from aresourcefilethevaluesl ef t ,cent er,orri ght may beused.
label This is a the string that will be displayed in the menu entry. The exact location of
this string within the bounds of the menu entry is controlled by the | ef t Mar gi n,
ri ght Margi n,vert Space, andj usti fy resources.
leftBitmap
rightBitmap Thisisaname of abitmap to display intheleft or right margin of themenu entry. All 1's

in the bitmap will be rendered in the foreground color, and all O's will be drawn in the
background color of the SimpleMenu widget. It is the programmers' responsibility to
make sure that the menu entry istall enough, and the appropriate margin wide enough

57

Menus

leftMargin

rightMargin

vertSpace

to accept the bitmap. If care is not taken the bitmap may extend into another menu
entry, or into this entry's label.

Thisis the amount of space (in pixels) that will be left between the edge of the menu

entry and the label string.

This is the amount of vertical padding, expressed as a percentage of the height of the
font, that is to be placed around the label of a menu entry.. The label and bitmaps are
aways centered vertically within the menu. The default value for this resource (25)

causes the default height to be 125% of the height of the font.

SmelLine Object

Application Header file <X11/ Xaw SneLi ne. h>

Cl ass Header

d ass

sneLi ne(bj ect d ass

Cl ass Nane SnelLine

Supercl ass Sne

file <X11/ Xaw SnmeLi neP. h>

The SmeLine object is used to add a horizontal line or menu separator to a menu. Since each SmelLine
is an independent object, the application is able to change the color, height, and other attributes of the
Smel.ine objects on an entry by entry basis. This object is not selectable, and will not highlight when the
pointer cursor is over it.

Resources

The resources associated with the SmeL.ine object are defined in this section, and affect only the single
menu entry specified by this object.

Name Class Type Notes Default Value
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel XtDefaultForeground
height Height Dimension lineWdth
international International Boolean C False
lineWidth LineWidth Dimension 1
stipple Stipple Pixmap X tUnspecifiedPixmap
width Width Dimension 1
foreground A pixel value which indexes the SimpleMenu's colormap to derive the foreground color

used to draw the separator line. Keep in mind that the SimpleMenu widget will force

58

Menus

lineWidth

stipple

Sme Object

al menu items to be the width of the widest entry. Thus, setting the width is generally
not very important.

The width of the horizontal line that is to be displayed.

If abitmap is specified for this resource, the line will be stippled through it. This allows
the menu separator to be rendered as something more exciting than just a line. For
instance, if you define a stipple that is a chain link, then your menu separators will 1ook
like chains.

Application Header file <X11/Xaw Sne. h>

Cl ass Header file <X11/ Xaw SneP. h>

d ass

snmelbj ect Ol ass

Cl ass Nane Sne

Super cl ass Rect Qbj

The Sme object isthe base classfor all menu entries. While this object ismainly intended to be subclassed,
it may be used in amenu to add blank space between menu entries.

Resources

The resources associated with the SmelL.ine object are defined in this section, and affect only the single
menu entry specified by this object. There are no new resources added for this class, asit picks up al its

resources from the RectObj class.

Name Class Type Notes Default Value
ancestorSensitive | AncestorSensitive Boolean True
callback Callback XtCallbackL.ist NULL
destroyCallback Callback XtCallbackList NULL
height Height Dimension 0
international International Boolean C False
sensitive Sensitive Boolean True
width Width Dimension 1

Keep in mind that the SimpleMenu widget will force all menu items to be the width of the widest entry.

Subclassing the Sme Object

To Create a new Sme object class you will need to define three class methods. These methods allow the
SimpleMenu to highlight and unhighlight the menu entry as the pointer cursor moves over it, as well as

59

Menus

notify the entry when the user has selected it. All of these methods may be inherited from the Sme object,
although the default semantics are not very interesting.

Hi ghl i ght () Called to put the menu entry into the highlighted state.
Unhi ghl i ght () Called to return the widget to its normal (unhighlighted) state.
Not i fy() Called when the user selects this menu entry.

Other then these methods, creating a new object is straight forward. Here is some information that may
help you avoid some common mistakes.

1. Objects can be zero pixels high.

2. Objects draw on their parent's window, therefore the Drawing dimensions are different from those of
widgets. For instance, y locationsvary fromy toy + hei ght, not O to hei ght .

3. XtSetValues calls may come from the application while the Sme is highlighted, and if the SetValues
method returns True, will result in an expose event. The SimpleMenu may later call the menu entry's
unhi ghl i ght procedure. However, dueto the asynchronous nature of X, the expose event generated
by Xt Set Val ues will come after this unhighlight.

4. Remember that your subclass of the Sme does not own the window. Share the space with other menu
entries, and refrain from drawing outside the subclass's own section of the menu.

MenuButton Widget

Application Header file <X11/Xaw MenuButton. h>

Cl ass Header file <X11/ Xaw MenuBut t onP. h>

G ass nenuButtonW dget Cl ass

Cl ass Name MenuButton

Super cl ass Commrand

The MenuButton widget is an area, often rectangular, that displays a graphic. The graphic may be a text
string containing multiple lines of charactersin an 8 bit or 16 bit character set (to be displayed with afont),
or in amulti-byte encoding (for use with a fontset). The graphic may also be a bitmap or pixmap.

When the pointer cursor is on a MenuButton widget, the MenuButton becomes highlighted by drawing
a rectangle around its perimeter. This highlighting indicates that the MenuButton is ready for selection.

When a pointer button is pressed, the MenuButton widget will pop up the menu named in the menuNane
resource.

Resources

When creating a MenuButton widget instance, the following resources are retrieved from the argument
list or from the resource database:

60

Menus

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgroun(F
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixma[b
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's Colormap
cornerRoundPercentCornerRoundPercent Dimension 25
cursor Cursor Cursor None
cursorName Cursor String None
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar awTextEncoding8bit
font Font XFontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel X tDefaultForeground
height Height Dimension A graphic
height + 2 *
i nt er nal Hei ght
highlightThickness Thickness Dimension A 2 (0 if Shaped)
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
internal Width Width Dimension 4
international International Boolean C False
justify Justify Justify XtdustifyCenter
(center)
|abel L abel String name of widget
leftBitmap LeftBitmap Bitmap None
mappedWhenM anagélappedwWhenManaged Boolean True
menuName MenuName String "menu’”
pointerColor Foreground Pixel X tDefaultForeground
pointerColorBackground Background Pixel X tDefaultBackground
resize Resize Boolean True
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True

61

Menus

Name Class Type Notes Default Value
shapeStype ShapeStyle ShapeStyle Rectangle
trandations Tranglations TrandationTable See below

width Width Dimension A graphic width + 2 *

i nternal Wdth

X Position Position 0

y Position Position 0
nmenuNane The name of a popup shell to popup as a menu. The MenuButton will

search for thisname using Xt NameToW dget starting with itself asthe
reference widget. If the search isunsuccessful the widget will continue up
the widget tree using each of its ancestors as the reference widget passed
to Xt NaneToW dget . If no widget of called menuNane is found by
thisalgorithm, thewidget will print awarning message and give up. When
the menu isfound it will be popped up exclusive and spring_loaded. The
MenuButton widget does not copy the value of this resource into newly
alocated memory. The application programmer must pass the resource
value in nonvolatile memory.

MenuButton Actions

The MenuButton widget supports the following actions:
 Switching the button between the foreground and background colors with set and unset
 Processing application callbackswith not i fy

» Switching the internal border between highlighted and unhighlighted states with hi ghl i ght and
unhi ghl i ght

 Popping up a menu with PopupMenu

The following are the default trandlation bindings used by the MenuButton widget:

<Ent er W ndow>: hi ghlight ()
<LeaveW ndow>: reset()
<Bt nDown>: reset () PopupMenu(\)

MenuButton Actions

Thefull list of actions supported by MenuButton is:

hi ghl i ght (condi ti on) Displays the internal highlight border in the color (f or egr ound
or background) that contrasts with the interior color of the
Command widget. The conditions WhenUnset and Al ways are
understood by this action procedure. If no argument is passed,
WhenUnset isassumed.

62

Menus

unhi ghl i ght ()

set ()

unset ()

reset ()

notify()

PopupMenu()

Displays the interna highlight border in the color
(Xt Nf or egr ound or backgr ound) that matches the interior
color of the MenuButton widget.

Enters the set dtate, in which not i fy is possible. This action
causes the button to display itsinterior in thef or egr ound color.
Thelabel or bitmap is displayed in the backgr ound color.

Cancels the set state and displays the interior of the button in
the backgr ound color. The label or bitmap is displayed in the
f or egr ound color.

Cancels any set or hi ghl i ght and displays the interior of the
button in the backgr ound color, with the label displayed in the
f or egr ound color.

When the buttonisintheset statethisaction callsall functionsin
the callback list named by the cal | back resource. The vaue of
the call_data argument in these callback functions is undefined.

Pops up the menu specified by the menuNane resource.

The MenuButton widget does not place aserver grab on itself. Instead, PopupMenu isregistered asagrab
action. Asaresult, clientswhich popup menuswithout using XtMenuPopup or MenuPopup or PopupMenu
in tranglations will fail to have a grab active. They should make a call to XtRegisterGrabAction on the
appropriate action in the application initialization routine, or use a different trandation.

63

Chapter 5. Text Widgets

Text

The Text widget provides awindow that will allow an application to display and edit one or more lines of
text. Options are provided to alow the user to add Scrollbars to its window, search for a specific string,
and modify the text in the buffer.

The Text widget ismade up of anumber of pieces; it was modul arized to ease customization. The Ascii Text
widget class (actually not limited to ASCII but so named for compatibility) is be general enough to
most needs. If more flexibility, special features, or extra functionality is needed, they can be added by
implementing a new TextSource or TextSink, or by subclassing the Text Widget (See Section 5.8 for
customization details.)

The words insertion point are used in this chapter to refer to the text caret. This is the symbol that
is displayed between two characters in the file. The insertion point marks the location where any new
characters will be added to the file. To avoid confusion the pointer cursor will always be referred to as
the pointer.

Thetext widget supportsthree edit modes, controlling the types of modificationsauser isallowed to make:
» Append-only

 Editable

* Read-only

Read-only mode does not allow the user or the programmer to modify the text in the widget. While the
entire string may be reset in read-only mode with Xt Set Val ues, it cannot be modified via with
XawText Repl ace. Append-only and editable modes allow thetext at the insertion point to be modified.

The only difference is that text may only be added to or removed from the end of a buffer in append-
only mode.

Widget for Users

The Text widget provides many of the common keyboard editing commands. These commandsallow users
to move around and edit the buffer. If an illegal operation is attempted, (such as deleting charactersin a
read-only text widget), the X server will beep.

Default Key Bindings

The default key bindings are patterned after those in the EMACS text editor:

Crl-a Beginning O Line Meta-b Backward Wrd

Crl-b Backward Character Meta-f Forward Wrd

Ctrl-d Del ete Next Character Meta-i Insert File

Crl-e End O Line Meta-k Kill To End O Paragraph

Crl-f Forward Character Meta-q Form Paragraph

Crl-g Multiply Reset Meta-v Previous Page

Crl-h Delete Previous Character Meta-y Insert Current Sel ection

Text Widgets

Crl-j Newine And Indent Meta-z Scroll One Line Down
Crl-k Kill To End O Line Meta-d Del ete Next Wrd
Crl-1 Redraw Display Meta-D Kill Wrd

Crl-mNew ine Meta-h Del ete Previous Wrd

Ctrl-n Next Line Meta-H Backward Kill Word

Ctrl-o Newine And Backup Meta-< Beginning O File
Crl-p Previous Line Meta-> End O File

Crl-r Search/Repl ace Backward Meta-] Forward Paragraph
Ctrl-s Search/Repl ace Forward Meta-[Backward Paragraph
Crl-t Transpose Characters

Crl-u Multiply by 4 Meta-Delete Del ete Previ ous Wrd
Crl-v Next Page Meta-Shift Delete Kill Previous Wrd
Crl-wKill Selection Mta-Backspace Del ete Previous Wrd
Crl-y Unkill Meta-Shift Backspace Kill Previous Wrd
Crl-z Scroll One Line Up

Ctrl-\\ Reconnect to input nethod

Kanji Reconnect to input nethod

In addition, the pointer may be used to cut and paste text:

=

Button Down Start Sel ection
Button Mot i on Adj ust Sel ection
Button 1 Up End Sel ection (cut)

=

Button 2 Down | nsert Current Sel ection (paste)

w

Button Down Extend Current Selection
Button Mot i on Adj ust Sel ection
Button 3 Up End Sel ection (cut)

w

Since al of these key and pointer bindings are set through the trandations and resource manager, the
user and the application programmer can modify them by changing the Text widget'st r ansl at i ons
resource.

Search and Replace

The Text widget provides a search popup that can be used to search for a string within the current Text
widget. The popup can be activated by typing either Control-r or Control-s. If Control-sisused the search
will be forward in the file from the current location of the insertion point; if Control-r is used the search
will be backward. The activated popup is placed under the pointer. It has a number of buttons that allow
both text searches and text replacements to be performed.

At the top of the search popup are two toggle buttons labeled backward and forward. One of these buttons
will always be highlighted; thisisthe direction in which the search will be performed. The user can change
the direction at any time by clicking on the appropriate button.

Directly under the buttons there are two text areas, one labeled Search for: and the other l1abeled Replace
with:. If thisisaread-only Text widget the Replace with: field will beinsensitive and no replacements will
be allowed. After each of these labels will be atext field. Thisfield will allow the user to enter astring to
search for and the string to replace it with. Only one of these text fields will have awindow border around

65

Text Widgets

it; thisis the active text field. Any key presses that occur when the focus in in the search popup will be
directed to the active text field. There are also afew special key sequences:

Carriage Return: Execute the action, and pop down the search wi dget.
Tab: Execute the action, then nove to the next field.

Shift Carriage Return: Execute the action, then nove to the next field.
Control-g Tab: Enter a Tab into a text field.

Control -c: Pop down the search popup.

Using these special key sequences should allow simple searches without ever removing one's hands from
the keyboard.

Near the bottom of the search popup is a row of buttons. These buttons allow the same actions to to be
performed as the key sequences, but the buttons will leave the popup active. This can be quite useful if
many searches are being performed, as the popup will be left on the display. Since the search popup is
atransient window, it may be picked up with the window manager and pulled off to the side for use at
alater time.

Search Search for the specified string.

Replace Replace the currently highlighted string with the string in the Replace with text field, and
move onto the next occurrence of the Search for text field. The functionality iscommonly
referred to as query-replace.

ReplaceAll Replace all occurrences of the search string with the replace string from the current
insertion point position to the end (or beginning) of the file. There is no key sequence
to perform this action.

ReplaceAll Remove the search popup from the screen.

Finally, when i nt er nati onal resourceistrue, there may be a pre-edit buffer below the button
row, for composing input. Its presence is determined by the X locale in use and the VendorShell's
pr eedi t Type resource.

Thewidget hierarchy for the search popup is show below, all widgets arelisted by class and instance name.

Text <nane of Text w dget>
Transi ent Shel | search
Form form
Label |abel1
Label | abel 2
Toggl e backwar ds
Toggl e forwards
Label searchLabe
Text searchText
Label repl aceLabe
Text repl aceText
Command search
Conmand repl aceOne
Conmand repl aceAl
Conmand cancel

66

Text Widgets

File Insertion

Toinsert afileinto atext widget, type the key sequence Meta-i, which will activate the file insert popup.

This popup will appear under the pointer, and any text typed while the focus is in this popup will be
redirected to the text field used for the filename. When the desired filename has been entered, click on
Insert File, or type Carriage Return. The named file will then be inserted in the text widget beginning
at the insertion point position. If an error occurs when opening the file, an error message will be printed,
prompting the user to enter the filename again. The file insert may be aborted by clicking on Cancel. If
Meta-i istyped at atext widget that is read-only, it will beep, asno file insertion is allowed.

The widget hierarchy for the file insert popup is show below; all widgets are listed by class and instance
name.

Text <nane of Text w dget>
Transient Shell insertFile
Form form
Label | abel
Text text
Command i nsert
Command cancel

Text Selections for Users

The text widgets have a text selection mechanism that allows the user to copy pieces of the text into the
PRI MARY selection, and paste into the text widget some text that another application (or text widget) has
put in the PRI MARY selection.

One method of selecting text isto press pointer button 1 on the beginning of the text to be selected, drag
the pointer until all of the desired text is highlighted, and then release the button to activate the selection.
Another method isto click pointer button 1 at one end of the text to be selected, then click pointer button
3 at the other end.

To modify acurrently active selection, press pointer button 3 near either the end of the selection that you
want to adjust. This end of the selection may be moved while holding down pointer button 3. When the
proper area has been highlighted release the pointer button to activate the selection.

The selected text may now be pasted into another application, and will remain active until some other
client makes a selection. To paste text that some other application has put into the PRI MARY selection
use pointer button 2. First place theinsertion point where you would like the text to be inserted, then click
and release pointer button 2.

Rapidly clicking pointer button 1 the following number of times will adjust the selection as described.

Two Select the word under the pointer. A word boundary is defined by the Text
widget to be a Space, Tab, or Carriage Return.

Thr ee Select the line under the pointer.

Four Select the paragraph under the pointer. A paragraph boundary is defined by
the text widget as two Carriage Returns in a row with only Spaces or Tabs
between them.

Five Select the entire text buffer.

To unset the text selection, click pointer button 1 without moving it.

67

Text Widgets

Text Widget Actions

All editing functions are performed by transation manager actions that may be specified through the
t ransl at i ons resource in the Text widget.

I nsert Point Myvenent
f orwar d- char act er
backwar d- char act er
f orwar d- word
backwar d- wor d
f or war d- par agr aph
backwar d- par agr aph
begi nni ng-of - 1i ne
end-of -1i ne
next-1ine
previous-1line
next - page
previ ous- page
begi nni ng-of -file
end-of -file
scrol | -one-1ine-up
scrol | -one-1ine-down

M scel | aneous
redr aw di spl ay
insert-file
i nsert-char
insert-string
di spl ay- car et
focus-in
focus-in
sear ch
mul tiply
f or m par agr aph
transpose-characters
no- op
XawMWPr ot ocol s
reconnect-im

Kill

Del et e

del et e- next - char act er

del et e- previ ous-char act er
del et e- next -word

del et e- previ ous-wor d

del et e-sel ecti on

Sel ection

sel ect-word

sel ect - al

sel ect-start

sel ect - adj ust
sel ect - end
extend-start

ext end- adj ust
ext end- end

i nsert-sel ection

New Li ne

new i ne- and- i ndent
newl i ne- and- backup

new i ne

kill-word
backward- kil | -word
kill-sel ection
kill-to-end-of-1ine

ki Il - paragraph
kill-to-end-of - paragraph

Most of the actions take no arguments, and unless otherwise noted you may assume this to be the case.

Cursor Movement Actions

forward-character()

backward-character()

These actions move the insert point forward or backward one

character inthebuffer. If theinsert point isat the end or beginning of

68

Text Widgets

forward-word()

backward-word()

forward-paragraph()
backward-paragraph()

beginning-of-line()
end-of-line()

next-line()

previous-ling()

next-page()
previous-page()

beginning-of-file()
end-of-file()

scroll-one-line-up()

scroll-one-line-down()

Delete Actions

delete-next-character()

delete-previous-character()

alinethisaction will movetheinsert point to the next (or previous)
line.

These actions move the insert point to the next or previous word
boundary. A word boundary is defined as a Space, Tab or Carriage
Return.

These actions move the insert point to the next or previous
paragraph boundary. A paragraph boundary is defined as two
Carriage Returnsin arow with only Spaces or Tabs between them.

These actions move to the beginning or end of the current line. If
the insert point is already at the end or beginning of the line then
no action is taken.

These actions movetheinsert point up or downoneline. If theinsert
point is currently N characters from the beginning of the line then
it will be N characters from the beginning of the next or previous
line. If N is past the end of the line, the insert point is placed at the
end of theline.

These actions move the insert point up or down one pagein thefile.
One page is defined as the current height of the text widget. The
insert point is always placed at the first character of the top line by
this action.

These actions place the insert point at the beginning or end of the
current text buffer. The text widget is then scrolled the minimum
amount necessary to make the new insert point location visible.

These actions scroll the current text field up or down by one line.
They do not move the insert point. Other than the scrollbars thisis
the only way that the insert point may be moved off of the visible
text area. The widget will be scrolled so that theinsert point is back
on the screen as soon as some other action is executed.

These actions remove the character immediately before or after the
insert point. If a Carriage Return is removed then the next line is
appended to the end of the current line.

69

Text Widgets

delete-next-word()

delete-previous-word()

delete-selection()

Selection Actions

select-word()

select-all()

sel ect-start()

select-adjust()

select-end(namel,name,...])

extend-start()

extend-adjust()

extend-end(namel,name,...])

insert-selection(name] ,name,...])

The New Line Actions

newline-and-indent()

These actions remove al characters between the insert point
location and the next word boundary. A word boundary is defined
as a Space, Tab or Carriage Return.

This action removes all characters in the current selection. The
selection can be set with the selection actions.

This action selects the word in which the insert point is currently
located. If the insert point is between words then it will select the
previous word.

This action selects the entire text buffer.

This action sets the insert point to the current pointer location (if
triggered by a button event) or text cursor location (if triggered
by a key event). It will then begin a selection at this location. If
many of these selection actions occur quickly in succession thenthe
selection count mechanism will be invoked (see the section called
“Text Selections for Application Programmers’ for details).

This action allows a selection started with the select-start action to
be modified, as described above.

This action ends a text selection that began with the select-
start action, and asserts ownership of the selection or selections
specified. A name can beaselection (e.g., PRI MARY) or acut buffer
(e.g., CUT_BUFFERQ). Notethat caseisimportant. If no namesare
specified, PRI MARY is asserted.

Thisaction findsthe nearest end of the current selection, and moves
it to the current pointer location (if triggered by a button event) or
text cursor location (if triggered by a key event).

This action alows a selection started with an extend-start action to
be modified.

This action ends a text selection that began with the extend-
start action, and asserts ownership of the selection or selections
specified. A name can beaselection (e.g. PRI MARY) or acut buffer
(e.g CUT_BUFFERQ). Note that case isimportant. If no names are
given, PRI MARY is asserted.

This action retrieves the value of the first (left-most) named
selection that exists or the cut buffer that is not empty and insertsit
into the Text widget at the current insert point location. A name can
beaselection (e.g. PRI MARY) or acut buffer (e.g CUT_BUFFERO).
Note that case isimportant.

This action inserts a newline into the text and adds spaces to that
line to indent it to match the previousline.

70

Text Widgets

newline-and-backup()

newling()

Kill and Actions
kill-word()

backward-kill-word()

kill-selection()

kill-to-end-of-ling()

kill-paragraph()

kill-to-end-of -paragraph()

Miscellaneous Actions

redraw-display()

insert-file([filename])

insert-char()

insert-string(string[,string,...])

This action inserts a newline into the text after the insert point.

This action inserts a newline into the text before the insert point.

These actions act exactly like the delete-next-word and delete-
previous-word actions, but they stuff the word that was killed into
thekill buffer (CUT_BUFFER_1).

This action deletes the current selection and stuffs the deleted text
into the kill buffer (CUT_BUFFER_1).

This action deletes the entire line to the right of the insert
point position, and stuffs the deleted text into the kill buffer
(CUT_BUFFER_1).

This action deletes the current paragraph, if between paragraphs it
deletes the paragraph above the insert point, and stuffs the deleted
text into the kill buffer (CUT_BUFFER _1).

This action deletes everything between the current insert point
location and the next paragraph boundary, and stuffs the deleted
text into the kill buffer (CUT_BUFFER_1).

This action recomputes the location of al the text lines on the
display, scrolls the text to vertically center the line containing the
insert point on the screen, clearsthe entire screen, and redisplaysit.

This action activates the insert file popup. The filename option
specifies the default filename to put in the filename buffer of the
popup. If no filename is specified the buffer is empty at startup.

This action may only be attached to a key event. When
the i nternati onal resource is fal se, this action calls
XLookupString to trandate the event into a (rebindable) Latin-1
character (sequence) and inserts it into the text at the insert
point. When the i nt er nat i onal resourceist r ue, characters
are passed to the input method via XwcLookupString, and any
committed string returned isinserted into the text at theinsert point.

This action inserts each string into the text at the insert point
location. Any string beginning with the characters "0x" followed
by an even number of hexadecimal digits is interpreted as a
hexadecimal constant and the corresponding string is inserted
instead. This hexadecima string may represent up to 50 8-
bit characters. When thel nt er nat i onal resourceistrue, a
hexadecimal string is intrepeted as being in a multi-byte encoding,
and a hexadecimal or regular string will result in an error message
if itisnot legal in the current locale.

71

Text Widgets

display-caret(state,when)

*Text. Transl ati ons:

<Focusl n>:
<FocusCQCut >:

focus-in()
focus-out()

search(direction,[string])

multiply(value)

form-paragraph()

transpose-characters()

no-op([action])

This action allows the insert point to be turned on and off. The
state argument specifies the desired state of the insert point. This
value may be any of the string values accepted for Boolean
resources (e.g. on, Tr ue, of f , Fal se, etc.). If no arguments are
specified, the default valueis Tr ue. The when argument specifies,
for Ent er Not i fy or LeaveNot i f y events whether or not the
focus field in the event is to be examined. If the second argument
isnot specified, or specified as something other than al ways then
if the action is bound to an Ent er Noti fy or LeaveNotify
event, the action will be taken only if the focus field is Tr ue. An
augmented binding that might be useful is:

#override \\
di spl ay-caret (on) \\n\\
di spl ay-caret (off)

These actions do not currently do anything.

This action activates the search popup. The direction must be
specified aseither f or war d or backwar d. The string is optional
and is used as an initial value for the Search for: string. For
further explanation of the search widget see the section on Text

Sear ches.

The multiply action allows the user to multiply the effects of
many of the text actions. Thus the following action sequence
multiply(10) delete-next-word() will delete 10 words. It does not
matter whether these actionstake placein one event or many events.
Using the default trand ations the key sequence Control-u, Control-
d will delete 4 characters. Multiply actions can be chained, thus
multiply(5) multiply(5) is the same as multiply(25). If the string
reset ispassed to the multiply action the effects of al previous
multiplies are removed and a beep is sent to the display.

This action removes all the Carriage Returns from the current
paragraph and reinsertsthem so that each lineisaslong as possible,
while still fitting on the current screen. Lines are broken at word
boundaries if at al possible. This action currently works only on
Text widgets that use ASCII text.

This action will swap the position of the character to the left of the
insert point with the character to the right of the insert point. The
insert point will then be advanced one character.

The no-op action makes no change to the text widget, and is
mainly used to override trand ations. This action takes one optional
argument. If this argument is RingBell then a beep is sent to the

display.

XawWMProtocols([wm_protocol _namédhis action is written specifically for the file insertion and the

search and replace dialog boxes. This action is attached to those

72

Text Widgets

shells by the Text widget, in order to handle ClientMessage
events with the WM_PROTOCOLS atom in the detail field. This
action supports WM_DELETE_WINDOW on the Text widget
popups, and may support other window manager protocols if
necessary in the future. The popup will be dismissed if the window
manager sends a WM_DELETE_ WINDOW request and there
are no parameters in the action call, which is the default. The
popup will also be dismissed if the parameters include the string
“wm_delete window,” and the event is a ClientMessage event
reguesting dismissal or isnot a ClientMessage event. Thisactionis
not sensitive to the case of the strings passed as parameters.

reconnect-im() When the i nt er nati onal resourceistrue, input is usualy
passed to an input method, a separate process, for composing.
Sometimes the connection to this process gets severed; this action
will attempt to reconnect it. Causes for severage include network
trouble, and the user explicitly killing oneinput method and starting
anew one. Thisaction may also establish first connection when the
application is started before the input method.

Text Selections for Application Programmers

The default behavior of the text selection array is described in the section called Text Sel ecti ons
for Users. To modify the selections a programmer must construct a XawText Sel ect Type
array (called the selection array), containing the selections desired, and pass this as the new
value for the sel ectionTypes resource. The selection array may also be modified using
the XawText Set Sel ecti onArray function. All selection arrays must end with the value
Xawsel ect Nul | . Thesel ecti onTypes resource hasno converter registered and cannot be modified
through the resource manager.

Thearray containsalist of entriesthat will be called when the user attemptsto select text in rapid succession
with the select-start action (usually by clicking a pointer button). Thefirst entry in the selection array will
be used when the select-start action is initially called. The next entry will be used when select-start is
called again, and so on. If atimeout value (1/10 of a second) is exceeded, the the next select-start action
will begin at the top of the selection array. When Xawsel ect Nul | is reached the array is recycled
beginning with the first element.

Xawsel ect Al | Selects the contents of the entire buffer.
Xawsel ect Char Selectstext characters asthe
pointer moves over them.
Xawsel ect Li ne Selectsthe entire line.
Xawsel ect Nul | Indicates the end of the selection array.
Xawsel ect Par agr aph Selects the entire paragraph.
Xawsel ect Posi tion Selects the current pointer position.
Xawsel ect Wor d Selects whole words as the

pointer moves onto them.

The default selectType array is.

{Xawsel ect Posi ti on, Xawsel ect Wrd, Xawsel ectLine, Xawsel ect Paragraph, Xawsel ectAl |

73

Text Widgets

The selection array is not copied by the text widgets. The application must allocate space for the array and
cannot deallocate or change it until the text widget is destroyed or until a new selection array is set.

Default Translation Bindings

The following tranglations are defaults built into every Text widget. They can be overridden, or replaced
by specifying a new value for the Text widget'st r ansl| at i ons resource.

Crl <Key>A: begi nni ng-of -1ine() \\n\\

Ctrl <Key>B: backwar d- character () \\n\\

Ctrl <Key>D: del et e- next-character () \\n\\
Ctrl <Key>E: end-of -line() \\n\\

Ctrl <Key>F: forward-character() \\n\\

Crl <Key>G mul tiply(Reset) \\n\\

Ctrl <Key>H: del et e- previ ous-character () \\n\\
Crl <Key>J: new i ne-and-i ndent () \\n\\

Ctrl <Key>K: kill-to-end-of-line() \\n\\

Ctrl <Key>L: redraw di splay() \\n\\

Crl <Key>M newl i ne() \\n\\

Ctrl <Key>N: next-line() \\n\\

Crl <Key>QO new i ne- and- backup() \\n\\

Crl <Key>P: previous-line() \\n\\

Crl <Key>R: sear ch(backward) \\n\\

Ctrl <Key>S: search(forward) \\n\\

Crl <Key>T: transpose-characters() \\n\\
Crl <Key>U: mul tiply(4) \\n\\

Crl <Key>V: next - page() \\n\\

Crl <Key>W kill-selection() \\n\\

Crl <Key>Y: i nsert-sel ection(CUT_BUFFER1) \\n\\
Crl <Key>Z: scroll-one-line-up() \\n\\

Crl <Key>\\: reconnect-im) \\n\\

Met a<Key>B: backwar d-word() \\n\\

Met a<Key>F: forward-word() \\n\\

Met a<Key>| : insert-file() \\n\\

Met a<Key>K: kill-to-end-of-paragraph() \\n\\
Met a<Key>Q form paragraph() \\n\\

Met a<Key>V: previ ous-page() \\n\\

Met a<Key>Y: i nsert-sel ecti on(PRI MARY, CUT_BUFFERO) \\n\\
Met a<Key>Z: scrol | -one-1line-down() \\n\\

: Met a<Key>d: del et e- next -word() \\n\\

: Met a<Key>D: kill-word() \\n\\

: Met a<Key>h: del et e- previ ous-word() \\n\\

: Met a<Key>H: backward- kil | -word() \\n\\

D Met a<Key>\\ <:
: Met a<Key>\\ >:

: Met a<Key>] :
: Met a<Key>[:

~Shift Meta<Key>Del et e:
Shift Met a<Key>Del et e:
~Shift Met a<Key>Backspace:

begi nni ng-of -file() \\n\\

end-of -file() \\n\\
f orwar d- paragraph() \\n\\
backwar d- par agraph() \\n\\

del et e- previ ous-word() \\n\\

backward- kil | -word() \\n\\
del et e- previ ous-word() \\n\\

74

Text Widgets

Shift Met a<Key>Backspace: backward- kil | -word() \\n\\
<Key>Ri ght : forward-character() \\n\\
<Key>Left: backwar d- character () \\n\\
<Key>Down: next-line() \\n\\
<Key>Up: previous-line() \\n\\
<Key>Del et e: del et e- previ ous-character () \\n\\
<Key>BackSpace: del et e- previ ous-character () \\n\\
<Key>Li nef eed: new i ne-and-i ndent () \\n\\
<Key>Ret ur n: new ine() \\n\\
<Key>: i nsert-char() \\n\\
<Key>Kanj i : reconnect-im) \\n\\
<Focusl n>: focus-in() \\n\\
<FocusCut >: focus-out () \\n\\
<Bt n1Down>: select-start() \\n\\
<Bt n1Mot i on>: ext end- adj ust () \\n\\
<Bt n1Up>: ext end- end(PRI MARY, CUT_BUFFERO) \\n\\
<Bt n2Down>: i nsert-sel ecti on(PRI MARY, CUT_BUFFERO) \\n\\
<Bt n3Down>: extend-start() \\n\\
<Bt n3Mot i on>: ext end- adj ust () \\n\\
<Bt n3Up>: ext end- end(PRI MARY, CUT_BUFFERO) \\n

Text Functions

Thefollowing functionsare provided as convenience routinesfor use with the Text widget. Although many
of these actions can be performed by modifying resources, these interfaces are frequently more efficient.

These data structures are defined in the Text widget's public header file, <X11/Xaw/Text.h>.
typedef long XawTextPosition;

Character positions in the Text widget begin at 0 and end at n, where n isthe number of charactersin the
Text source widget.

typedef struct {
int firstPos;
int length;
char *ptr;
unsi gned | ong format;
} XawText Bl ock, *XawText Bl ockPtr;

firstPos The first position, or index, to use within the ptr field. The value is
commonly zero.

length The number of characters to be used from the ptr field. The number of
characters used is commonly the number of charactersin ptr, and must
not be greater than the length of the string in ptr.

ptr Contains the string to be referenced by the Text widget.

75

Text Widgets

format This flag indicates whether the data pointed to by ptr is char or
wchar_t. When the associated widget has i nt er nati onal set to
f al se thisfield must be XawFmt8Bit. When the associated widget has
i nternational settotrue thisfield must be either XawFmt8Bit or
XawFmtWide.

Note

Note: Previous versions of Xaw used FMI8BI T, which has been retained for backwards
compatibility. FMI'8BI T isdeprecated and will eventually be removed from the implementation.

Selecting Text

To select apiece of text, use XawText Set Sel ecti on :

voi d XawText Set Sel ection(w, right);

w Specifies the Text widget.
left Specifies the character position at which the selection begins.
right Specifies the character position at which the selection ends.

See section 5.4 for adescription of XawText Posi ti on. If redisplay isenabled, thisfunction highlights
the text and makes it the PRI MARY selection. This function does not have any effect on CUT_BUFFERO.

Unhighlighting Text

To unhighlight previously highlighted text in awidget, use XawText Unset Sel ecti on:
voi d XawText Unset Sel ection(w);

w Specifies the Text widget.

Getting Current Text Selection

To retrieve the text that has been selected by thistext widget use XawText Get Sel ect i onPos:

voi d XawText CGet Sel ecti onPos(w, *end return);

w Specifies the Text widget.
begin_return Returns the beginning of the text selection.
end _return Returns the end of the text selection.

See section 5.4 for a description of XawText Posi ti on. If the returned values are equal, no text is
currently selected.

Replacing Text

To modify thetext in an editable Text widget use XawText Repl ace:

i nt XawText Repl ace(w, end, *text);

76

Text Widgets

w Specifies the Text widget.

start Specifies the starting character position of the text replacement.
end Specifies the ending character position of the text replacement.
text Specifies the text to be inserted into the file.

This function will not be able to replace text in read-only text widgets. It will also only be able to append
text to an append-only text widget.

See section 5.4 for a description of XawText Posi ti on and XawText Bl ock.
This function may return the following values:
XawEdi t Done The text replacement was successful.

XawPosi ti onError Theedit modeisXawt ext Append andst ar t isnot the position
of the last character of the source.

Xawedi t Er r or Either the Source was read-only or the range to be deleted is larger
than the length of the Source.

The XawText Repl ace arguments st art and end represent the text source character positions for
the existing text that is to be replaced by the text in the text block. The characters from start up to but not
including end are deleted, and the characters specified on the text block are inserted in their place. If start
and end are equal, no text is deleted and the new text isinserted after start.

Searching for Text

To search for astring in the Text widget, use XawText Sear ch:

XawText Posi ti on XawText Search(w, dir, text);

w Specifies the Text widget.

dir Specifies the direction to search in. Legal values are XawsdLeft and
XawsdRi ght .

text Specifies atext block structure that contains the text to search for.

See section 5.4 for adescription of XawText Posi t i on and XawText Bl ock. The XawText Sear ch
function will begin at the insertion point and search in the direction specified for a string that matches the
one passed in text. If the string is found the location of the first character in the string is returned. If the
string could not be found then the value XawText Sear chEr r or isreturned.

Redisplaying Text
Toredisplay arange of characters, use XawText | nval i dat e:

voi d XawText | nvalidate(w, to);

w Specifies the Text widget.
from Specifies the start of the text to redisplay.
to Specifies the end of the text to redisplay.

77

Text Widgets

See section 5.4 for adescription of XawText Posi ti on. The XawText | nval i dat e function causes
the specified range of characters to be redisplayed immediately if redisplay is enabled or the next time
that redisplay is enabled.

To enableredisplay, use XawText Enabl eRedi spl ay:
voi d XawText Enabl eRedi spl ay(w);
w Specifies the Text widget.

The XawText Enabl eRedi spl ay function flushes any changes due to batched updates when
XawText Di sabl eRedi spl ay was caled and allows future changes to be reflected immediately.

To disable redisplay while making several changes, use XawText Di sabl eRedi spl ay.
voi d XawText Di sabl eRedi splay(w);
w Specifies the Text widget.

The XawText Di sabl eRedi spl ay function causes al changes to be batched until either
XawText Di spl ay or XawText Enabl eRedi spl ay iscaled.

To display batched updates, use XawText Di spl ay:
voi d XawText Di splay(w);
w Specifies the Text widget.

The XawText Di spl ay function forces any accumulated updates to be displayed.

Resources Convenience Routines

To obtain the character position of the left-most character on the first line displayed in the widget (the
value of the di spl ayPosi t i on resource), use XawText TopPosi ti on.

XawText Posi ti on XawText TopPosition(w);

w Specifies the Text widget.

To assign anew selection array to atext widget use XawText Set Sel ecti onArray:
voi d XawText Set Sel ecti onArray(w, sarray);

w Specifies the Text widget.

sarray Specifies a selection array as defined in the section called “Text Selections
for Application Programmers’.

Calling thisfunction is equivalent to setting the value of thesel ect i onTypes resource.

To move the insertion point to the specified source position, use XawText Set | nserti onPoi nt:
voi d XawText Setl nsertionPoint(w, position);

w Specifies the Text widget.

position Specifies the new position for the insertion point.

78

Text Widgets

See section 5.4 for adescription of XawText Posi t i on. Thetext will be scrolled vertically if necessary
to make the line containing the insertion point visible. Calling this function is equivalent to setting the
i nsert Position resource.

To obtain the current position of the insertion point, use XawText Get | nserti onPoi nt :
XawText Posi ti on XawText Getl nsertionPoint(w);
w Specifies the Text widget.

See section 5.4 for adescription of XawText Posi ti on. Theresult is equivalent to retrieving the value
of thei nsert Posi ti on resource.

To replace the text source in the specified widget, use XawText Set Sour ce:

voi d XawText Set Source(w, source, position);

w Specifies the Text widget.
source Specifies the text source object.
position Specifies character position that will become the upper left hand corner

of the displayed text. Thisis usually set to zero.

See section 5.4 for adescription of XawText Posi ti on. A display update will be performed if redisplay
is enabled.

To obtain the current text source for the specified widget, use XawText Get Sour ce:
W dget XawText Get Source(w);

w Specifies the Text widget.

This function returns the text source that this Text widget is currently using.

To enable and disable the insertion point, use XawText Di spl ayCar et :

voi d XawText Di spl ayCaret(w, visible);

w Specifies the Text widget.

visible Specifies whether or not the caret should be displayed.

If vi si bl e isFal se the insertion point will be disabled. The marker is re-enabled either by setting
vi si bl etoTrue, by calling Xt Set Val ues, or by executing the di spl ay- car et action routine.

Ascii Text Widget

Application Header file <X11/Xaw Ascii Text. h>
Cl assHeader file <X11/ Xaw Ascii Text P. h>

Cl ass ascii Text Wdget d ass

79

Text Widgets

Cl ass Nane Text

Super cl ass Text
Si nk Nanme textSi nk
Source Name text Source

For the ease of internationalization, the AsciiText widget class name has not been changed, although
it is actually able to support non-ASCII locales. The AsciiText widget is really a collection of smaller
parts. It includes the Text widget itself, a“ Source” (which supports memory management), and a “ Sink”
(which handles the display). There are currently two supported sources, the AsciiSrc and MultiSrc, and
two supported sinks, the AsciiSink and ~ MultiSink. Some of the resources listed below are not actually
resources of the Ascii Text, but belong to the associated source or sink. Thisisis noted in the explanation
of each resource where it applies. When specifying these resources in a resource file it is necessary to
use * Ascii Text*resource_name instead of * AsciiText.resource_name, since they actually belong to the
children of the AsciiText widget, and not the AsciiText widget itself. However, these resources may be
set directly on the Ascii Text widget at widget creation time, or via Xt Set Val ues.

Resources

When creating an Ascii Text widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
autoFill AutoFill Boolean False
background Background Pixel (tDefauItBackgrounqj
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixmaﬂ)
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
bottomMargin Margin Position 2
callback Callback XtCallbackL.ist NULL
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor XC_xterm
cursorName Cursor String NULL
dataCompression | DataCompression Boolean True
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
displayCaret Output Boolean True
displayNonprinting Output Boolean True
displayPosition TextPosition XawTextPosition 0
echo Output Boolean True

80

Text Widgets

Name Class Type Notes Default Value
editType EditType XawTextEditType XawtextRead
font Font XFontStruct* XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel XtDefaultForeground
height Height Dimension A Font height
+ margins
insensitiveBorder Insensitive Pixmap GreyPixmap
insertPosition TextPosition int 0
international International Boolean C False
leftMargin Margin Dimension 2
length Length int A lengthof stri ng
mappedWhenM anagétlappedWhenManaged Boolean True
pieceSize PieceSize XawTextPosition BUFSIZ
pointerCol or Foreground Pixel X tDefaultForeground
pointerColorBackground Background Pixel X tDefaultBackground
resize Resize X aw TextResizeM ode X awtextResizeNever
rightMargin Margin Position 2
screen Screen Screen R Parent's Screen
scrollHorizontal Scroll XawTextScrolIMode XawtextScrolINever
scrollVertical Scroll XawTextScrollIMode XawtextScrolINever
selectTypes SelectTypes KawTextSelectTypet See above
sensitive Sensitive Boolean True
string String String NULL
textSink TextSink Widget An AsciiSink
textSource TextSource Widget An AsciiSrc
topMargin Margin Position 2
translations Tranglations TrandationTable See above
type Type XawAsciiType XawAsciiString
useStringlnPlace | UseStringlnPlace Boolean False
width Width Dimension 100
wrap Wrap WrapMode XawtextWrapNever
X Position Position 0
y Position Position 0

Ascii Source Object and Multi Source Object

81

Text Widgets

Application Header file <X11/Xaw Ascii Src. h> or <X11/Xaw Multi Src. h>
Cl ass Header file <X11/Xaw Ascii SrcP. h> or <X11/Xaw Multi SrcP. h>
Class asciiSrcObjectC ass or nulti SrcObjectd ass

Cl ass Name Ascii Src or MiltiSrc

Super cl ass Text Sour ce

The AsciiSrc or MultiSrc object is used by atext widget to read the text from afile or string in memory.
Depending onitsi nt er nat i onal resource, an AsciiText widget will create one or the other of these
when the AsciiText itself is created. Both types are nearly identical; the following discussion applies to
both, with MultiSrc differences noted only as they occur.

The AsciiSrc understands all Latinl characters plus Tab and Carriage Return. The Multi Sr¢ under stands
any set of character sets that the underlying X implementation's internationalization handles.

The AsciiSrc can be either of two types: XawAsci i Fi | e or XawAsci i Stri ng.

AsciiSrc objectsof type XawAsci i Fi | e read thetext from afile and storeit into an internal buffer. This
buffer may then be modified, provided the text widget isin the correct edit mode, just asif it were asource
of type XawAsci i St ri ng. Unlike R3 and earlier versions of the AsciiSrc, it is now possible to specify
an editable disk source. Thefileis not updated, however, until acall to XawAsci i Save ismade. When
the sourceisin thismodetheuseSt ri ngl nPl ace resourceisignored.

AsciiSrcobjectsof typeXawAsci i St ri ng havethetext bufferimplemented asastring. MultiSrc objects
of type XawAsci i St ri ng havethetext buffer implemented asawide character string. The string owner
isresponsible for alocating and managing storage for the string.

In the default case for AsciiSrc objects of type XawAsci i St ri ng, theresourceuseSt ri ngl nPl ace
isfalse, and the widget ownsthe string. Theinitial value of the string resource, and any update made by the
application programmer to the string resourcewith Xt Set Val ues, iscopied into memory privateto the
widget, and managed internally by the widget. The application writer does not need to worry about running
out of buffer space (subject to the total memory available to the application). The performance does not
decay linearly as the buffer grows large, as is necessarily the case when the text buffer is used in place.
The application writer must use Xt Get Val ues to determine the contents of the text buffer, which will
return acopy of the widget'stext buffer asit existed at thetime of the Xt Get Val ues call. Thiscopy is
not affected by subsequent updates to the text buffer, i.e., it is not updated as the user types input into the
text buffer. This copy is freed upon the next call to XtGetValues to retrieve the string resource; however,
to conserve memory, there is a convenience routine, XawAsci i Sour ceFr eeSt ri ng, alowing the
application programmer to direct the widget to free the copy.

When theresourceuseSt ri ngl nPl ace istrue and the AsciiSrc object isof type XawAsci i St ri ng,
the application is the string owner. The widget will take the value of the string resource as its own text
buffer, and the | engt h resource indicates the buffer size. In this case the buffer contents change as the
user types at thewidget; it isnot necessary tocall Xt Get Val ues onthe string resource to determine the
contents of the buffer-it will simply return the address of the application'simplementation of thetext buffer.

Resources

When creating an AsciiSrc object instance, the following resources are retrieved from the argument list
or from the resource database:

82

Text Widgets

Name Class Type Notes Default Value
callback Callback XtCallbackL.ist NULL
dataCompression | DataCompression Boolean True
destroyCallback Callback Callback NULL
editType EditType EditMode XawtextRead
length Length Int A length of st ri ng
pieceSize PieceSize Int BUFSIZ
string String String NULL
type Type AsciiType XawAsciiString
useStringlnPlace | UseStringlnPlace Boolean False

Convenience Routines

The AsciiSrc has a few convenience routines that allow the application programmer quicker or easier
access to some of the commonly used functionality of the AsciiSrc.

Conserving Memory

When the AsciiSrc widget isnot inuseSt ri ngl nPl ace mode space must be allocated whenever the
fileis saved, or the string is requested with acall to Xt Get Val ues. This memory is allocated on the
fly, and remains valid until the next time a string needs to be allocated. Y ou may save memory by freeing
this string as soon as you are done with it by calling XawAsci i Sour ceFreeStri ng.

voi d XawAsci i SourceFreeString(w;
w Specifies the AsciiSrc object.
This function will free the memory that contains the string pointer returned by Xt Get Val ues. This

will normally happen automatically when the next call to Xt Get Val ues occurs, or when the widget
is destroyed.

Saving Files
To save the changes made in the current text source into afileuse XawAsci i Save.
Bool ean XawAsci i Save(W) ;
w Specifies the AsciiSrc object.
XawAsci i Save returns Tr ue if the save was successful. It will update the file named inthest ri ng
resource. If the buffer has not been changed, no action will be taken. This function only works on an
AsciiSrc of type XawAsci i Fi | e.
To save the contents of the current text buffer into anamed fileuse XawAsci i SaveAsFi | e.

Bool ean XawAscii SaveAsFile(w, nane);

w Specifies the AsciiSrc object.

83

Text Widgets

name The name of the file to save the current buffer into.

Thisfunctionreturns Tr ue if the savewas successful. XawAsci i SaveAsFi | e will work with abuffer
of either type XawAsci i Stri ng or type XawAsci i Fi | e.

Seeing if the Source has Changed

To find out if the text buffer in an AsciiSrc object has changed since the last time it was saved with
XawAsci i Save or queried use XawAsci i Sour ceChanged.

Bool ean XawAsci i Sour ceChanged(w);
w Specifies the AsciiSrc object.

This function will return Tr ue if the source has changed since the last time it was saved or queried. The
internal change flag is reset whenever the string is queried via Xt CGet Val ues or the buffer is saved
via XawAsci i Save.

Ascii Sink Object and Multi Sink Object

Application Header file <X11/ Xaw Ascii Si nk. h>
Cl ass Header file <X11/ Xaw Asci i Si nkP. h>

Cl ass ascii Sinkbjectd ass

Cl ass Nanme Ascii Sink

Super cl ass Text Si nk

The AsciiSink or MultiSink object is used by a text widget to render the text. Depending on its
i nt ernati onal resource, aAsciiText widget will create one or the other of these when the Ascii Text
itself is created. Both types are nearly identical; the following discussion applies to both, with MultiSink
differences noted only as they occur. The AsciiSink will display all printing characters in an 8 bit font,
along with handling Tab and Carriage Return. The name has been left as “ AsciiSink” for compatibility.
The MultiSink will display all printing charactersin a font set, along with handling Tab and Carriage
Return. The source object also reports the text window metrics to the text widgets.

Resources

When creating an AsciiSink object instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value
background Background Pixel X tDefaultBackground
destroyCallback Callback XtCallbackList NULL

Text Widgets

Name Class Type Notes Default Value
displayNonprinting Output Boolean True
echo Output Boolean True
font Font XFontStruct* XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel X tDefaultForeground

Thisresourceisretrieved by the AsciiSink instead of being copied from the Text widget.

The text font to use when displaying the st r i ng. (Thisresource is present in the AsciiSink, but not the
MultiSink.)

The text font set to use when displaying the st r i ng. (This resource is present in the MultiSink, but not
the AsciiSink.)

Customizing the Text Widget

The remainder of this chapter will describe customizing the Text widget. The Text widget may be
customized by subclassing, or by creating new sources and sinks. Subclassing is described in detail in
Chapter 7; this section will describe only those things that are specific to the Text widget. Attributes of
the Text widget base class and creating new sources and sinks will be discussed.

The Text widget is made up of anumber of different pieces, with the Text widget as the base widget class.
It and the Ascii Text widget arethe only true "widgets" in the Text widget family. The other pieces (sources
and sinks) are X Toolkit objects and have no window associated with them. No source or sink is useful
unless assigned to a Text widget.

Each of the following pieces of the Text widget has a specific purpose, and will be, or has been, discussed
in detail in this chapter:

Text Thisisthe gluethat binds everything el se together. Thiswidget readsthe text datafrom the
source, and displays the information in the sink. All translations and actions are handled
in the Text widget itself.

Text Si nk Thisaobject isresponsible for displaying and clearing the drawing area. It also reports the
configuration of the window that contains the drawing area. The TextSink does not have
its own window; instead it does its drawing on the Text widget's window.

Text Src This object is responsible for reading, editing and searching through the text buffer.

Asci i Si nk Thisobject isasubclass of the TextSink and knows how to display ASCII text. Support
has been added to display any 8-bit character set, given the font.

Mul ti Si nk Thisobject isasubclass of the TextSink and knows how to display font sets.
Ascii Src This object is a subclass of the TextSrc and knows how to read strings and files.

Mul ti Src Thisobject isasubclass of the TextSrc and knows how to read strings and multibytefiles,
converting them to wide characters based on locale.

85

Text Widgets

Text

Asci i Text

Thiswidget is a subclass of the Text widget. When created, the Ascii Text automatically

creates and attaches either an AsciiSrc and AsciiSink, or a MultiSrc and MultiSink, to
itself. The Ascii Text provides the simplest interface to the Athena Text widgets.

Widget

Application Header file
Cl ass Header file

d ass
Cl ass Nane
Super cl ass

<X11/ Xaw/ Text . h>
<X11/ Xaw/ Text P. h>
t ext Wdget d ass
Text

Si npl e

The Text widget is the glue that binds al the other pieces together, it maintains the internal state of the

displayed text, and acts as a mediator between the source and sink.

This section lists the resources that are actually part of the Text widget, and explains the functionality

provided by each.
Resources
When creating a Text widget instance, the foll owing resources are retrieved from the argument list or from
the resource database:
Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
autoFill AutoFill Boolean False
background Background Pixel (tDefauItBackgroun(F
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixma[b
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
bottomMargin Margin Position 2
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor XC_xterm
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
displayCaret Output Boolean True
displayPosition TextPosition XawTextPosition 0
height Height Dimension A Font height
+ margins
insensitiveBorder Insensitive Pixmap GreyPixmap
insertPosition TextPosition int 0
leftMargin Margin Position 2

86

Text Widgets

Name Class Type Notes Default Value
mappedWhenM anagélappedwWhenManaged Boolean True
pointerColor Foreground Pixel X tDefaultForeground
pointerColorBackground Background Pixel X tDefaultBackground
resize Resize X aw TextResizeM ode X awtextResizeNever
rightMargin Margin Position 4
screen Screen Pointer R Parent's Screen
scrollHorizontal Scroll ScrollMode XawtextScrolINever
scrollVertical Scroll XawTextScrolIMode XawtextScrolINever,
selectTypes SelectTypes KawTextSelectType! See above
sensitive Sensitive Boolean True
textSink TextSink Widget NULL
textSource TextSource Widget NULL
topMargin Margin Position 2
translations Tranglations TrandationTable See above
unrealizeCallback Callback XtCallbackList NULL
width Width Dimension 100
wrap Wrap WrapMode XawtextWrapNever
X Position Position 0
y Position Position 0

TextSrc Object

Application Header file <X11/ Xaw Text Src. h>

Cl ass Header file <X11/ Xaw/ Text SrcP. h>
d ass t ext Srcoj ect d ass

G ass Nane Text Src

Super cl ass oj ect

The TextSrc object isthe root object for all text sources. Any new text source objects should be subclasses
of the TextSrc Object. The TextSrc Class contains all methods the Text widget expects a text source to
export.

Since al text sources will have some resources in common the TextSrc defines afew new resources.

Resources
When creating an TextSrc object instance, the following resources are retrieved from the argument list or
from the resource database:
Name Class Type Notes Default Value
destroyCallback Callback XtCallbackList NULL
editType EditType EditMode NULL

87

Text Widgets

Subclassing the TextSrc

The only purpose of the TextSrc Object is to be subclassed. It contains the minimum set of class methods
that all text sources must have. All class methods of the TextSrc must be defined, as the Text widget
uses them all. While all may be inherited, the direct descendant of TextSrc nust specify some of them
as TextSrc does not contain enough information to be avalid text source by itself. Do not try to use the
TextSrc as a vaid source for the Text widget; it is not intended to be used as a source by itself and bad

things will probably happen.

Function Inherit with Public Interface must specify
Read XtInheritRead XawTextSourceRead yes
Replace XtlnheritReplace XawTextSourceReplace no
Scan XtlnheritScan XawTextSourceScan yes
Search XtInheritSearch XawTextSourceSearch no
SetSelection XtInheritSetSelection XawTextSourceSetSelectian no
ConvertSelection XtlnheritConvertSel ectkamv T extSourceConvertSel ection no
Reading Text.
To read the text in atext source usethe Read function:
XawText Positi on Read(w, pos, *text_return, |ength);

w
pos
text

length

This function returns the text position immediately after the characters read from the text buffer. The
function is not required to read length charactersif that many charactersarein thefile, it may break at any
point that is convenient to the internal structure of the source. It may take several callsto Read before

Specifies the TextSrc object.

Specifies the position of the first character to be read from the text buffer.

Returns the text read fr

Specifies the maximum number of characters the TextSrc should return to

om the source.

the application in text_return.

the desired portion of the text buffer isfully retrieved.

Replacing Text.

To replace or edit the text in atext buffer usethe Repl ace function:

XawText Posi ti on Replace(w, end,
w Specifies the TextSrc object.
start

location to begin inserting the new text.

end

text

This function can return any of the following values:

*text);

Specifies the text to be added to the text source.

Specifies the position of the first character to be removed from the text buffer. Thisis also the

Specifies the position immediately after the last character to be removed from the text buffer.

88

Text Widgets

XawEdi t Done The text replacement was successful.

XawPosi ti onError The edit mode is Xawt ext Append and st art is not the last character of
the source.

XawEdi t Error Either the Source was read-only or the range to be deleted is larger than the
length of the Source.

The Repl ace argumentsst art and end represent the text source character positions for the existing
text that is to be replaced by the text in the text block. The characters from start up to but not including
end are deleted, and the buffer specified by the text block is inserted in their place. If start and end are
equal, no text is deleted and the new text isinserted after start.

Scanning the TextSrc

To search the text source for one of the predefined boundary types usethe Scan function:

XawText Position Scan(w, position, type, dir, count, include);

w Specifies the TextSrc object.

position Specifies the position to begin scanning the source.

type Specifies the type of boundary to scan for, may be one of: Xawst Positi on,

Xawst Whi t eSpace, Xawst EOL, Xawst Par agr aph, Xawst Al | . Theexact meaning
of these boundariesisleft up to the individual text source.

dir Specifies the direction to scan, may be either XawsdLeft to search backward, or
XawsdRi ght to search forward.

count Specifies the number of boundaries to scan for.
include Specifies whether the boundary itself should be included in the scan.

The Scan function returnsthe position in the text source of the desired boundary. It is expected to return
avalid address for al calls madeto it, thusif a particular request is made that would take the text widget
beyond the end of the source it must return the position of that end.

Searching through a TextSrc

To search for aparticular string usethe Sear ch function.

XawText Position Search(w, position, dir, *text);

w Specifies the TextSrc object.
position Specifies the position to begin the search.
dir Specifies the direction to search, may be either XawsdLeft to search backward, or

XawsdRi ght to search forward.
text Specifies atext block containing the text to search for.

Thisfunction will search through the text buffer attempting to find amatch for the string in the text block.
If amatch isfound in the direction specified, then the character location of the first character in the string
isreturned. If no text was found then XawText Sear chEr r or isreturned.

89

Text Widgets

Text Selections

Whilemany selection types are handled by the Text widget, text sources may have sel ection typesunknown
to the Text widget. When a selection conversion is requested by the X server the Text widget will first call
theConvert Sel ect i on function, to attempt the selection conversion.

Bool ean ConvertSelections(w, *type, *value_return, *length_return,
*format _return);

w Specifies the TextSrc object.

selection Specifies the type of selection that was requested (e.g. PRI MARY).

target Specifies the type of the selection that has been requested, which
indicatesthe desired information about the selection (e.g. Filename,
Text, Window).

type Specifies a pointer to the atom into which the property type of the

converted value of the selection isto be stored. For instance, either
file name or text might have property type XA _STRI NG.

value return Returns a pointer into which a pointer to the converted value of
the selection is to be stored. The selection owner is responsible
for allocating this storage. The memory is considered owned by
the toolkit, and is freed by XtFree when the Intrinsics selection
mechanism is done with it.

length_return Returns a pointer into which the number of elementsin valueisto
be stored. The size of each element is determined by format.

format_return Returns a pointer into which the size in bits of the data elements of
the selection valueis to be stored.

If thisfunction returns Tr ue then the Text widget will assume that the source hastaken care of converting
the selection, Otherwise the Text widget will attempt to convert the selection itself.

If the source needs to know when the text selection is modified it should definea Set Sel ecti on
procedure:

void SetSelection(w, end, selection);

w Specifies the TextSrc object.

start Specifies the character position of the beginning of the new text selection.
end Specifies the character position of the end of the new text selection.
selection Specifies the type of selection that was requested (e.g. PRI MARY).

TextSink Object

90

Text Widgets

Application Header file <X11/Xaw Text Si nk. h>
Cl ass Header file <X11/ Xaw Text Si nkP. h>

Cl ass textSinkObjectd ass

Cl ass Nanme Text Si nk

Super cl ass bj ect

The TextSink object is the root object for all text sinks. Any new text sink objects should be subclasses
of the TextSink Object. The TextSink Class contains all methods that the Text widget expects atext sink
to export.

Since all text sinks will have some resources in common, the TextSink defines a few new resources.

Resources

When creating an TextSink object instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value
background Background Pixel X tDefaultBackground
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel X tDefaultForeground

Subclassing the TextSink

The only purpose of the TextSink Object is to be subclassed. It contains the minimum set of class
methods that all text sinks must have. While all may beinherited, the direct descendant of TextSink must

speci f y some of them as TextSink does contain enough information to be avalid text sink by itself. Do
not try to usethe TextSink asavalid sink for the Text widget; it isnot intended to be used asasink by itself.

Function Inherit with Public Interface must specify
DisplayText XtlnheritDisplayText [XawTextSinkDisplay Text yes
InsertCursor XtlnheritinsertCursor XawTextSinklnsertCurso yes

ClearToBackground XtInheritClearToBackgboand extSinkClear ToBackgragund no
FindPosition XtlnheritFindPosition XawTextSinkFindPosition yes
FindDistance XtlnheritFindDistance XawTextSinkFindDistance yes

Resolve XtlnheritResolve XawTextSinkResolve yes

MaxLines XtinheritMaxLines | XawTextSinkMaxLines no

MaxHeight XtlnheritMaxHeight | XawTextSinkMaxHeight no
SetTabs XtInheritSetTabs XawTextSinkSetTabs no
GetCursorBounds XtlnheritGetCursorBounasv TextSi nkGetCursorBourpds yes

91

Text Widgets

Displaying Text
To display a section of the text buffer contained in the text source use the function Di spl ayText :

void DisplayText(w, 'y, pos2, highlight);

w Specifies the TextSink object.

X Specifies the x location to start drawing the text.

y Specifiesthe y location to start drawing text.

posl Specifies the location within the text source of the first character to be
printed.

pos2 Specifies the location within the text source of the last character to be
printed.

highlight Specifies whether or not to paint the text region highlighted.

The Text widget will only pass one line at atime to the text sink, so this function does not need to know
how to line feed the text. It is acceptable for this function to just ignore Carriage Returns. x and y denote
the upper left hand corner of the first character to be displayed.

Displaying the Insert Point

Thefunction that controlsthe display of thetext cursoris | nsert Cur sor . Thisfunction will becalled
whenever the text widget desires to change the state of, or move the insert point.

void InsertCursor(w, vy, state);

w Specifies the TextSink object.

X Specifies the x location of the cursor in Pixels.

y Specifiesthe y location of the cursor in Pixels.

state Specifies the state of the cursor, may be one of Xawi sOn or Xawi sOF f .

X and y denote the upper left hand corner of the insert point.

Clearing Portions of the Text window

To clear a portion of the Text window to its background color, the Text widget will call
Cl ear ToBackgr ound. The TextSink object already defines this function as calling XCl ear Ar ea on
the region passed. This behavior will be used if you specify Xt | nheri t C ear ToBackgr ound for
this method.

voi d O ear ToBackground(w, vy, height);

w Specifies the TextSink object.

X Specifies the x location, in pixels, of the Region to clear.
y Specifiesthe y location, in pixels, of the Region to clear.
width Specifies the width, in pixels, of the Region to clear.

92

Text Widgets

height Specifies the height, in pixels, of the Region to clear.

X and y denote the upper left hand corner of region to clear.

Finding a Text Position Given Pixel Values

To find the text character position that will be rendered at a given x location the Text widget uses the
function Fi ndPosi tion:

void FindPosition(w, fronPos, wdth, stopAtWrdBreak, *pos_return,
*hei ght _return);

w Specifies the TextSink object.

fromPos Specifiesareference position, usually thefirst character in thisline.
This character isalwaysto theleft of the desired character location.

fromx Specifies the distance that the left edge of fromPos is from the
left edge of the window. This is the reference x location for the
reference position.

width Specifies the distance, in pixels, from the reference position to the
desired character position.

stopAtWordBreak Specifies whether or not the position that is returned should be
forced to be on aword boundary.

pos return Returns the character position that corresponds to the location that
has been specified, or the work break immediately to the left of the
position if stopAtWordBreak is Tr ue.

width_return Returns the actual distance between fromPos and pos_return.
height_return Returns the maximum height of the text between fromPos and
pos _return.

This function need make no attempt to deal with line feeds. The text widget will only call it one line at
atime.

Another means of finding atext position is provided by the Resol ve function:
void Resolve(w, fromPos, wdth, *pos_return);
w Specifies the TextSink object.

fromPos Specifies a reference position, usually the first character in this line.
This character is always to the | eft of the desired character location.

fromx Specifies the distance that the left edge of fromPos is from the left
edge of the window. This s the reference x location for the reference
position.

width Specifies the distance, in pixels, from the reference position to the

desired character position.

pos return Returns the character position that corresponds to the location that
has been specified, or the word break immediately to the left if
stopAtWordBreak is Tr ue.

93

Text Widgets

This function need make no attempt to deal with line feeds. The text widget will only call it one line at
atime. Thisis a more convenient interface to the Fi ndPosi t i on function, and provides a subset of

its functionality.

Finding the Distance Between two Text Positions

To find the distance in pixels between two text positions on the same line use the function

Fi ndDi st ance.

voi d FindDi stance(w, toPos, fromX, *pos_return, *height_return);

w
fromPos

fromX

toPos

resWidth

resPos

height_return

Specifies the TextSink object.
Specifiesthetext buffer position, in characters, of the first position.

Specifies the distance that the left edge of fromPos is from the
left edge of the window. This is the reference x location for the
reference position.

Specifies the text buffer position, in characters, of the second
position.

Return the actual distance between fromPos and pos_return.

Returns the character position that corresponds to the actual
character position used for toPos in the calculations. This may
be different than toPos, for example if fromPos and toPos are on
different linesin thefile.

Returns the maximum height of the text between fromPos and
jpos_return.

This function need make no attempt to deal with line feeds. The Text widget will only call it one line at

atime.

Finding the Size of the Drawing area

To find the maximum number of lines that will fit into the current Text widget, use the function
MaxLi nes. The TextSink already defines this function to compute the maximum number of lines by

using the height of f ont .

i nt MaxLines(w, height);

w Specifies the TextSink object.

height Specifies the height of the current drawing area.

Returns the maximum number of lines that will fit in height.

Tofind the height required for agiven number of text lines, usethefunction MaxHei ght . The TextSink
already defines thisfunction to compute the maximum height of the window by using the height of f ont .

int MaxHeight(w, lines);
w Specifies the TextSink object.
height Specifies the height of the current drawing area.

94

Text Widgets

Returns the height that will be taken up by the number of lines passed.

Setting the Tab Stops

To set thetab stopsfor atext sink usethe Set Tabs function. The TextSink already definesthisfunction
to set the tab x location in pixels to be the number of characters times the figure width of f ont .

void SetTabs(w, *tabs);

w Specifies the TextSink object.
tab_count Specifies the number of tabs passed in tabs.
tabs Specifies the position, in characters, of the tab stops.

This function is responsible for the converting character positions passed to it into whatever internal
positions the TextSink uses for tab placement.

Getting the Insert Point's Size and Location
To get the size and location of theinsert point usethe Get Cur sor Bounds function.
voi d Get CursorBounds(w, *rect_return);
w Specifies the TextSinkObject.
rect_return Returns the location and size of the insert point.

Rect will befilled with the current size and location of the insert point.

95

Chapter 6. Composite and Constraint
Widgets

These widgets may contain arbitrary widget children. They implement a policy for the size and location

of their children.

Box Thiswidget will pack its children as tightly as possible in non-overlapping rows.

Dialog An implementation of acommonly used interaction semantic to prompt for auxiliary input
from the user, such as a filename.

Form A more sophisticated layout widget that allowsthe children to specify their positionsrelative
to the other children, or to the edges of the Form.

Paned Allows children to be tiled vertically or horizontally. Controls are also provided to allow
the user to dynamically resize the individual panes.

Porthole Allows viewing of amanaged child which isas large as, or larger than its parent, typically
under control of a Panner widget.

Tree Provides geometry management of widgets arranged in a directed, acyclic graph.

Viewport Consists of a frame, one or two scrollbars, and an inner window. The inner window can
contain all the datathat is to be displayed. Thisinner window will be clipped by the frame
with the scrollbars controlling which section of the inner window is currently visible.

Note

Box W

The geometry management semantics provided by the X Toolkit give full control of the size and
position of awidget to the parent of that widget. Whilethe children are allowed to request acertain
size or location, it is the parent who makes the final decision. Many of the composite widgets
herewill deny any geometry request from their children by default. If achild widget isnot getting
the expected size or location, it is most likely the parent disallowing arequest, or implementing
semantics slightly different than those expected by the application programmer.

If the application wishes to change the size or location of any widget it should make a call
to Xt Set Val ues. Thiswill alow the widget to ask its parent for the new size or location.
As noted above the parent is allowed to refuse this request, and the child must live with the
result. If the application is unable to achieve the desired semantics, then perhaps it should use
a different composite widget. Under no circumstances should an application programmer resort
to Xt MoveW dget or Xt Resi zeW dget ; these functions are exclusively for the use of
Composite widget implementors.

For more information on geometry management consult the X Toolkit Intrinsics - C Language
Interface.

idget

96

Composite and Constraint Widgets

Application Header file <X11/Xaw Box. h>
Cl ass Header file <X11/ Xaw BoxP. h>

Cl ass boxWdget d ass

Cl ass Name Box

Super cl ass Conposite

The Box widget provides geometry management of arbitrary widgets in a box of a specified dimension.
The children are rearranged when resizing events occur either on the Box or its children, or when children
are managed or unmanaged. The Box widget always attempts to pack its children as tightly as possible
within the geometry allowed by its parent.

Box widgetsare commonly used to manage arel ated set of buttons and are often called ButtonBox widgets,
but the children are not limited to buttons. The Box's children are arranged on a background that has its
own specified dimensions and color.

Resources

3

When creating a Box widget instance, the following resources are retrieved from the argument list or from
the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgroun(F
backgroundPixmap Pixmap Pixmap (tUnspecifiedPixmaﬂ)
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension A seeLayout
Semanti cs
hSpace HSpace Dimension 4
nappedwWhenM anagidlappedwWhenManaged Boolean True
numcChildren ReadOnly Cardinal R 0
orientation Orientation Orientation XtorientVertical

97

Composite and Constraint Widgets

Name Class Type Notes Default Value
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
vSpace V Space Dimension 4
tranglations Tranglations TrandationTable NULL
width Width Dimension A see Layout
Semanti cs
X Position Position 0
y Position Position 0
hSpace
vSpace The amount of space, in pixels, to leave between the children. This

resource specifies the amount of space left between the outermost
children and the edge of the box.

Specifies whether the preferred shape of the box (i.e. the
result returned by the query geometry class method) is
tall and narrow XtorientVertical or short and wide
XtorientHorizontal . When the Box is a child of a
parent which enforces width constraints, it is usually better to
specify Xt orientVertical (the default). When the parent
enforces height constraints, it is usualy better to specify
XtorientHorizontal .

orientation

Layout Semantics

Each time a child is managed or unmanaged, the Box widget will attempt to reposition the remaining
children to compact the box. Children are positioned in order left to right, top to bottom. The packing
algorithm used depends on theor i ent at i on of the Box.

When the next child does not fit on the current row, a new row
is started. If a child is wider than the width of the box, the box
will request alarger width from its parent and will begin the layout
process from the beginning if anew width is granted.

XtorientVertical

When the next child does not fit on the current row, the Box widens
if possible (so asto keep children on asingle row); otherwise anew
row is started.

Xt ori ent Hori zont al

After positioning all children, the Box widget attempts to shrink its own size to the minimum dimensions
required for the layout.

Dialog Widget

98

Composite and Constraint Widgets

Application Header file <X11/Xaw Di al og. h>
Cl ass Header file <X11/ Xaw Di al ogP. h>

Cl ass dial ogWdget d ass

Cl ass Nanme Di al og

Super cl ass Form

The Dialog widget implements acommonly used interaction semantic to prompt for auxiliary input from a
user. For example, you can use a Dialog widget when an application requires asmall piece of information,
such as a filename, from the user. A Dialog widget, which is simply a special case of the Form widget,
provides a convenient way to create a preconfigured form.

The typical Dialog widget contains three areas. The first line contains a description of the function of the
Dialog widget, for example, the string Filename:. The second line contains an area into which the user
types input. The third line can contain buttons that let the user confirm or cancel the Dialog input. Any
of these areas may be omitted by the application.

Resources
When creating a Dialog widget instance, the following resources are retrieved from the argument list or
the resource database:
Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgrounqi
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixmaﬂ)
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
defaultDistance Thickness int 4
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension A Enough space to
contain al children
icon Icon Bitmap None
label Label String "label"
mappedWhenM anagélappedwWhenManaged Boolean True
numcChildren ReadOnly Cardinal R 0
screen Screen Screen R Parent's Screen

99

Composite and Constraint Widgets

Name Class Type Notes Default Value
sensitive Sensitive Boolean True
trandations Tranglations TrandationTable NULL
value Value String no value widget
width Width Dimension A Enough space to
contain all children
X Position Position 0
y Position Position 0
i con A pixmap image to be displayed immediately to theleft of the Dialog widget's
label.
| abel A string to be displayed at the top of the Dialog widget.
val ue Aninitial valuefor the string field that the user will enter text into. By default,

no text entry field is available to the user. Specifying an initial value for
val ue activates the text entry field. If string input is desired, but no initial
value isto be specified then set this resourceto " (empty string).

Constraint Resources

Each child of the Dialog widget may request special layout resources be applied to it. These constraint
resources alow the Dialog widget's children to specify individual layout requirements.

Name Class Type Notes Default Value
bottom Edge XawEdgeType XawRubber
fromHoriz Widget Widget NULL (left
edge of Dialog)
fromVert Widget Widget NULL (top
edge of Dialog)
horizDistance Thickness int def aul t Di st ance
resource
left Edge XawEdgeType XawRubber
resizable Boolean Boolean FALSE
right Edge XawEdgeType XawRubber
top Edge XawEdgeType XawRubber
vertDistance Thickness int def aul t Di st ance
resource
bottom
left
right
top VWhat to do with this edge of the child when

the parent is resized. This resource may be
any edgeType. See Layout Semantics for
details.

100

Composite and Constraint Widgets

fromHori z

fronVert VWi ch widget this child should be pl aced
underneath (or to the right of). If a value
of NULL is specified then this widget will be
positioned relative to the edge of the par-
ent.

hori zDi st ance
vert Di st ance The anmount of space, in pixels, between this
child and its left or upper neighbor.

resi zabl e If this resource is False then the parent
wi dget will ignore all geonetry request made
by this child. The parent may still resize

this child itself, however.

Layout Semantics

The Dialog widget uses two different sets of layout seman- tics. One is used when initially laying out the
children. The other is used when the Dialog is resized.

The first layout method uses the f r omVert mand f r onHor i z resources to place the children of the
Dialog. A single passis madethrough the Dialog widget's childrenin the order that they were created. Each
childisthen placed in the Dial og widget below or to theright of thewidget specified by thef r onVer t and
f ronHor i z resources. The distance the new child is placed from itsleft or upper neighbor is determined
by thehori zDi st ance andvert Di st ance resources. Thisimplies some things about how the order
of creation affects the possible placement of the children. The Form widget registers a string to widget
converter which does not postpone conversion and does not cache conversion results.

The second layout method is used when the Dialog is resized. It does not matter what causes this resize,
and it is possi- ble for aresize to happen before the widget becomes visible (due to constraints imposed
by the parent of the Dialog). This layout method usesthebott om,t op,l eft ,andri ght resources.
These resources are used to determine what will happen to each edge of the child when the Dialog is
resized. If avalue of XawChai n <something> is specified, the the edge of the child will remain a fixed
distance from the chain edge of the Dialog. For exampleif XawChai nLef t misspecified for ther i ght

mresource of a child then the right edge of that child will remain a fixed distance from the left edge of
the Dialog widget. If avalue of XawRubber mis spec- ified, that edge will grow by the same percentage
that the Dialog grew. For instance if the Dialog grows by 50% the left edge of the child (if specified as
XawRubber mwill be 50% farther from the left edge of the Dialog). One must be very careful when
specifying these resources, for when they are specified incorrectly children may overlap or completely
occlude other children when the Dialog widget is resized.

Edge Type Resour ce Name Description
XawChainBottom ChainBottom Edge remains a fixed distance
from bottom of Dialog
XawChainL eft ChainL eft Edge remains a fixed
distance from left of Dialog
XawChainRight ChainRight Edge remains afixed
distance from right of Dialog
XawChainTop ChainTop Edge remains afixed
distance from top of Dialog

101

Composite and Constraint Widgets

Edge Type Resour ce Name Description

XawRubber Rubber Edgeswill movea
proportional distance

Example

If you wish to force the Dialog to never resize one or more of its childrenthen set| eft andri ght to
XawChai nLeft andt op and bot t omto XawChai nTop. Thiswill cause the child to remain afixed
distance from the top and left edges of the Dialog, and to never resize.

Special Considerations

The Dialog widget automatically setsthet op and bot t omresources for all Children that are subclasses
of the Command widget, as well as the widget children that are used to contain the| abel , val ue, and
i con. Thispoalicy allowsthe buttons at the bottom of the Dialog to interact correctly with the predefined
children, and makes it possible for a client to simply create and manage a new Command button without
having to specify its constraints.

The Dialog will also set f r onlLef t to the last button in the Diaog for each new button added to the
Dialog widget.

The automatically added constraints cannot be overridden, as they are policy decisions of the Dialog
widget. If a more flexible Dialog is desired, the application is free to use the Form widget to create its
own Diaog policy.

Automatically Created Children.

The Dialog uses Label widgets to contain the | abel and i con. These widgets are named label and
icon respectively. The Dialog val ue is contained in an Ascii Text widget whose nameisval ue. Using
Xt NaneToW dget the application can change those resources associated with each of these widgets
that are not available through the Dialog widget itself.

Convenience Routines

To return the character string in the text field, use

String XawDi al ogGet Val ueString(w;

w Specifies the Dialog widget.

This function returns a copy of the value string of the Dialog widget. This string is
allocated by the AsciiText widget and will remain valid and unchanged until another call to
XawDi al ogCGet Val ueString or an Xt Get Val ues call on the val ue widget, when the string
will be automatically freed, and a new string is returned. This string may be freed earlier by calling the
function XawAsci i Sour ceFreeStri ng.

To add anew button to the Dialog widget use XawDi al ogAddBut t on.

voi d XawDi al ogAddButton(w, name, func, client_data);

w Specifies the Dialog widget.

102

Composite and Constraint Widgets

name Specifies the name of the new Command button to be added to the
Dialog.
func Specifies a callback function to be caled when this button is

activated. If NULL is specified then no callback is added.
client_data Specifies the client_data to be passed to the func.

This function is merely a shorthand for the code sequence:

{
W dget button = Xt Creat eManagedW dget (name, comandW dget d ass, w, NULL, ZERO);

Xt AddCal | back(button, XtNcall back, func, client_data);
}

Form Widget

Application Header file <X11/ Xaw Form h>
Cl ass Header file <X11/ Xaw For nP. h>
Class fornmN dgetd ass

Class Nanme Form

Super cl ass Constrai nt

The Form widget can contain an arbitrary number of children or subwidgets. The Form provides
geometry management for its children, which allows individual control of the position of each child. Any
combination of children can be added to a Form. The initial positions of the children may be computed
relativeto the positionsof previously created children. When the Formisresized, it computes new positions
and sizes for its children. This computation is based upon information provided when a child is added
to the Form.

The default width of the Form is the minimum width needed to enclose the children after computing their
initial layout, with amargin of def aul t Di st ance at the right and bottom edges. If awidth and height
isassigned to the Form that istoo small for the layout, the children will be clipped by the right and bottom
edges of the Form.

Resources

When creating a Form widget instance, the following resources are retrieved from the argument list or
from the resource database:

103

Composite and Constraint Widgets

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgroun(F
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixma[b
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
defaultDistance Thickness int 4
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension A Enough space to
contain all children
mappedWhenM anagétlappedwWhenManaged Boolean True
numChildren ReadOnly Cardina R 0
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
translations Translations TrandationTable NULL
width Width Dimension A Enough space to
contain al children
X Position Position 0
y Position Position 0

Constraint Resources

Each child of the Form widget may request special layout resources be applied to it. These constraint
resources allow the Form widget's children to specify individual layout requirements.

Name Class Type Notes Default Value
bottom Edge XawEdgeType XawRubber
fromHoriz Widget Widget NULL (left
edge of Form)
fromVert Widget Widget NULL (top
edge of Form)
horizDistance Thickness int def aul t Di st ance
resource
left Edge XawEdgeType XawRubber

104

Composite and Constraint Widgets

Name Class Type Notes Default Value
resizable Boolean Boolean FALSE
right Edge XawEdgeType XawRubber
top Edge XawEdgeType XawRubber
vertDistance Thickness int def aul t Di st ance
resource
bott om
| eft
right
top What to do with this edge of the child when
the parent is resized. This resource may be
any edgeType. See Layout Senantics for
details.
fromHori z
fronVert Wi ch widget this child should be placed
underneath (or to the right of). If a value

of NULL is specified then this widget will be
positioned relative to the edge of the par-
ent.

hori zDi st ance
vert Di st ance The amount of space, in pixels, between this
child and its left or upper neighbor.

resi zabl e If this resource is False then the parent
wi dget will ignore all geonetry request nmde
by this child. The parent may still resize

this child itself, however.

Layout Semantics

The Form widget uses two different sets of layout semantics. One is used when initialy laying out the
children. The other is used when the Form isresized.

Thefirst layout method usesthef r omert andf r onHor i z resourcesto placethe children of the Form.
A single pass is made through the Form widget's children in the order that they were created. Each child
is then placed in the Form widget below or to the right of the widget specified by the f r onVert and
f ronHor i z resources. Thedistancethe new childisplaced fromits|eft or upper neighbor isdeter- mined
by thehori zDi st ance andvert Di st ance resources. Thisimplies some things about how the order
of creation affects the possible placement of the children. The Form widget registers a string to widget
converter which does not post- pone conversion and does not cache conversion results.

The second layout method is used when the Form is resized. It does not matter what causes this resize,
and it ispossi- ble for aresize to happen before the widget becomes visible (due to constraints imposed by
the parent of the Form). This layout method usesthebott omt op, | eft,andri ght resources. These
resources are used to determine what will happen to each edge of the child when the Form isresized. If a
value of XawChai n <something> is specified, the the edge of the child will remain afixed distance from
the chain edge of the Form. For example if XawChai nLef t is specified for theri ght resource of a
child then the right edge of that child will remain a fixed distance from the left edge of the Form widget.

105

Composite and Constraint Widgets

If avalue of XawRubber is specified, that edge will grow by the same percentage that the Form grew.
For instance if the Form grows by 50% the left edge of the child (if specified as XawRubber will be
50% farther from the left edge of the Form). One must be very careful when specifying these resources,
for when they are specified incorrectly children may overlap or completely occlude other children when
the Form widget is resized.

Edge Type Resour ce Name Description
XawChainBottom ChainBottom Edge remains afixed distance
from bottom of Form
XawChainL eft ChainL eft Edge remains afixed
distance from left of Form
XawChainRight ChainRight Edge remains a fixed
distance from right of Form
XawChainTop ChainTop Edge remains afixed
distance from top of Form
XawRubber Rubber Edgeswill movea
proportional distance

Example

If you wish to force the Form to never resize one or more of its children, then set | eft and ri ght to
XawChai nLeft andt op and bot t omto XawChai nTop. Thiswill cause the child to remain afixed
distance from the top and left edges of the Form, and never to resize.

Convenience Routines

To force or defer are-layout of the Form, use

voi d XawFor nDoLayout (w, do_I|ayout);

w Specifies the Form widget.
do_layout Specifies whether the layout of the Form widget is enabled (Tr ue) or
disabled (Fal se).

When making severa changes to the children of a Form widget after the Form has been realized, it isa
good ideato disable relayout until after all changes have been made.

Paned Widget

Application Header file <X11/Xaw Paned. h>
Cl ass Header file <X11/ Xaw PanedP. h>

Cl ass panedW dget O ass

106

Composite and Constraint Widgets

Cl ass Nane Paned

Super cl ass Constrai nt

The Paned widget manages children in a vertically or horizontally tiled fashion. The panes may be
dynamically resized by the user by using the grips that appear near the right or bottom edge of the border

between two panes.

The Paned widget may accept any widget class as a pane except Grip. Grip widgets have a special
meaning for the Paned widget, and adding a Grip asits own pane will confuse the Paned widget.

Using the Paned

Widget

The grips alow the panesto be resized by the user. The semantics of how these panes resize is somewhat
complicated, and warrants further explanation here. When the mouse pointer is positioned on a grip and
pressed, an arrow is displayed that indicates the pane that isto be to be resized. While keeping the mouse
button down, the user can move the grip up and down (or left and right). This, in turn, changes the size
of the pane. The size of the Paned widget will not change. Instead, it chooses another pane (or panes) to
resize. For more details on which pane it choosesto resize, seeLayout Senanti cs.

One pointer binding allows the border between two panes to be moved, without affecting any of the other
panes. When this occurs the pointer will change to an arrow that points along the pane border.

The default bindings for the Paned widget's grips are:

M ouse button Paneto Resize - Vertical Paneto Resize - Horizontal
1 (left) above the grip left of the grip
2 (middle) adjust border adjust border
3 (right) below the grip right of the grip
Resources
When creating a Paned widget instance, the following resources are retrieved from the argument list or
the resource database:
Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgroun(F
backgroundPixmap Pixmap Pixmap (tUnspecifiedPixmaﬂ)
betweenCursor Cursor Cursor A Depends on
orientation
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1

107

Composite and Constraint Widgets

Name Class Type Notes Default Value
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor None
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
gripCursor Cursor Cursor A Depends on
orientation
griplndent Griplndent Position 10
gripTrandations Tranglations TrandationTable see below
height Height Dimension A Dependson
orientation
harizontal BetweenCursor Cursor Cursor sb_up_arrow
horizontal GripCursor Cursor Cursor sb_h double_arrow
internal BorderCol or BorderColor Pixel X tDefaultForeground
internalBorderWidth| BorderWidth Dimension 1
|eftCursor Cursor Cursor sb_left_arrow
lowerCursor Cursor Cursor sb_down_arrow
mappedWhenM anagélappedWhenManaged Boolean True
numcChildren ReadOnly Cardinal R 0
orientation Orientation Orientation XtorientVertica
refigureMode Boolean Boolean True
rightCursor Cursor Cursor sb_right_arrow
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
translations Trangdations TrangationTable NULL
upperCursor Cursor Cursor sb_up_arrow
vertical BetweenCursg Cursor Cursor sb_left_arrow
vertical GripCursor Cursor Cursor sb_v_double_arrow
width Width Dimension A Dependson
orientation
X Paned Position 0
y Paned Position 0
cursor The cursor to use when the mouse pointer is over the Paned widget,
but not in any of its children (children may a so inherit this cursor).
It should be noted that the internal borders are actualy part of the
Paned widget, not the children.
gri pCursor The cursor to use when the grips are not active. The default value

is vertical GipCursor or horizontal Gi pCursor
depending on the orientation of the Paned widget.

108

Composite and Constraint Widgets

gri pl ndent

gri pTransl ation
hori zont al Bet weenCur sor

verti cal Bet weenCur sor

hori zont al Gri pCur sor

vertical Gi pCursor

i nt er nal Bor der Col or

i nt er nal Bor der W dt h

| ef t Cursor

ri ght Cursor

| ower Cur sor

upper Cur sor

orientation

refi gureMode

Constraint Resources

The amount of space |eft between the right (or bottom) edge of the
Paned widget and all the grips.

Tranglation table that will be applied to all grips.

The cursor to be used for the grip when changing the boundary
between two panes. These resources alow the cursors to be
different depending on the orientation of the Paned widget.

The cursor to be used for the grips when they are not active.
These resources allow the cursors to be different depending on the
orientation of the Paned widget.

A pixel value which indexes the widget's colormap to derive the
internal border color of the widget's window. The class name of
this resource allows Paned* BorderColor: blue to set the internal
border color for the Paned widget. An optimization is invoked if
i nt er nal Bor der Col or and backgr ound are the same, and
the internal borders are not drawn. i nt er nal Bor der W dt h is
still left between the panes, however.

The width of the internal borders. This is the amount of space
left between the panes. The class name of this resource allows
Paned*BorderWidth: 3 to set the internal border width for the
Paned widget.

The cursor used to indicate which is the important pane to resize
when the Paned widget is oriented horizontally.

The cursor used to indicate which is the important pane to resize
when the Paned widget is oriented vertically. Thisis not the same
as the number of panes, since this also contains a grip for some of
the panes, use XawPanedGet Nunfub to retrieve the number of
panes.

The orientation to stack the panes. This value can be either
XtorientVertical orXtorientHorizontal.

This resource alows pane layout to be suspended. If this value is
Fal se, then no layout actions will be taken. This may improve
efficiency when adding or removing more than one pane from the
Paned widget.

Each child of the Paned widget may request special layout resources be applied to it. These constraint
resources allow the Paned widget's children to specify individual layout requirements.

109

Composite and Constraint Widgets

Name Class Type Notes Default Value
allowResize Boolean Boolean False
max Max Dimension Infinity
min Min Dimension Height of Grips
preferredPaneSize | PreferredPaneSize Dimension ask child
resizeToPreferred Boolean Boolean False
showGrip ShowGrip Boolean True
skipAdjust Boolean Boolean False

al | owResi ze

pr ef erredPaneSi ze

resi zeToPreferred
showG i p

ski pAdj ust

Layout Semantics

If this value is Fal se the the Paned widget will disalow all
geometry reguests from this child.

The absol ute maximum or minimum sizefor this pane. Thesevalues
will never be overridden by the Paned widget. This may cause some
panes to be pushed off the bottom (or right) edge of the paned
widget.

Normally the paned widget makes a QueryGeometry call on achild
to determine the preferred size of the child's pane. There are times
when the application programmer or the user has a better idea of
the preferred size of a pane. Setting this resource causes the value
passed to beinterpreted as the preferred size, in pixels, of this pane.

Determines whether or not to resize each pane to its preferred size
when the Paned widget isresized. See Layout Senanti cs for
details.

If Tr ue thenagrip will be shown for this pane. The grip associated
with a pane is either below or to the right of the pane. No grip is
ever shown for the last pane.

This resource is used to determine which pane is forced to be
resized. Setting this value to Tr ue makes this pane less likely to
beforced to beresized. See Layout Semanti cs for details.

In order to make effective use of the Paned widget it is helpful to know the rules it uses to determine
which child will be resized in any given situation. There are three rules used to determine which child is
resized. While these rules are always the same, the panes that are searched can change depending upon

what caused the relayout.

Layout Rul es

1 Do not |et a pane grow larger than its max or smaller thanitsm n.
2 Do not adjust paneswith ski pAdj ust set.
3 Do not adjust panes away from their preferred size, although moving one closer to

its preferred sizeisfine.

110

Composite and Constraint Widgets

When searching the children the Paned widget |ooks for panesthat satisfy all the rules, and if unsuccessful
then it eliminates rule 3 and then 2. Rule 1 is aways enforced.

If the relayout is due to a resize or change in management then the panes are searched from bottom to
top. If the relayout is due to grip movement then they are searched from the grip selected in the direction
opposite the pane selected.

Resizing Panes from a Grip Action

The pane above the grip is resized by invoking the GripAction with UpLef t Pane specified. The panes
below the grip are each checked against all rules, then rules 2 and 1 and finally against rule 1 only. No
pane above the chosen pane will ever be resized.

The panebelow the grip isresized by invoking the GripActionwith LowRi ght Pane specified. The panes
above the grip are each checked in this case. No pane below the chosen pane will ever be resized.

Invoking GripAction with Thi sBor der Onl y specified just moves the border between the panes. No
other panes are ever resized.

Resizing Panes after the Paned widget is resized.

When the Pane widget is resized it must determine a new size for each pane. There are two methods of
doing this. The Paned widget can either give each paneits preferred size and then resize the panesto fit, or
it can use the current sizes and then resize the panesto fit. Ther esi zeToPr ef er r ed resource allows
the application to tell the Paned widget whether to query the child about its preferred size (subject to the
the pr ef er r edPaneSi ze) or to use the current size when refiguring the pane locations after the pane
has been resized.

Thereisone special case. All panes assumethey should resizeto their preferred size until the Paned widget
becomes visible to the user.

Managing Children and Geometry Management
The Paned widget always resizes its children to their preferred sizes when a new child is managed, or a
geometry management request is honored. The Paned widget will first attempt to resize itself to contain

its panes exactly. If thisis not possible then it will hunt through the children, from bottom to top (right
to left), for apaneto resize.

Special Considerations

When a user resizes a pane with the grips, the Paned widget assumes that this new size is the preferred
size of the pane.

Grip Translations

The Paned widget has no action routines of its own, asall actions are handled through the grips. The grips
are each assigned a default Trand ation table.

<Bt n1Down>: Gri pAction(Start, UpLeftPane)

<Bt n2Down>: Gri pAction(Start, Thi sBorderOnly)
<Bt n3Down>: Gri pAction(Start, LowRi ghtPane)

111

Composite and Constraint Widgets

<Bt n1Motion>: Gi pAction(Mve, UpLeftPane)

<Bt n2Moti on>: Gi pAction(Mwve, Thi sBorderOnly)
<Bt n3Moti on>: Gi pActi on(Myve, LowR ght Pane)
Any<Bt nUp>: Gi pActi on(Comm t)

The Paned widget interpretsthe Gr i pAct i on astaking two arguments. The first argument may be any
of the following:

Start Sets up the Paned widget for resizing and changes the cursor of the grip. The
second argument determines which panewill beresized, and can take on any
of the three values shown above.

Move The internal borders are drawn over the current pane locations to animate
where the borders would actually be placed if you were to move this border
as shown. The second argument must match the second argument that was
passed to the St ar t action, that began this process. If these arguments are
not passed, the behavior is undefined.

Conmi t This argument causes the Paned widget to commit the changes selected by

the previoudly started action. The cursor ischanged back to thegrip'sinactive
cursor. No second argument is needed in this case.

Convenience Routines

To enable or disable a child's request for pane resizing, use XawPanedAl | owResi ze :

voi d XawPanedAl | owResi ze(w, all ow resize);

w Specifies the child pane.
allow_resize Specifies whether or not resizing requests for this child will be
granted by the Paned widget.

If allow_resizeis Tr ue, the Paned widget allows geometry requests from the child to change the pane's
height. If allow_resize is Fal se, the Paned widget ignores geometry requests from the child to change
the pane's height. The default stateis Tr ue beforethe Paneisrealized and Fal se after it isrealized. This
procedure is equivalent to changing the al | owResi ze constraint resource for the child.

To change the minimum and maximum height settings for a pane, use XawPanedSet M nivax :

voi d XawPanedSet M nMax(w, max);

w Specifies the child pane.
min Specifies the new minimum height of the child, expressed in pixels.
max Specifies new maximum height of the child, expressed in pixels.

This procedure is equivalent to setting the m n and max constraint resources for the child.

To retrieve the minimum and maximum height settings for a pane, use XawPanedGet M nMax
voi d XawPanedGet M nMax(w, *nax_return);

w Specifies the child pane.

min_return Returns the minimum height of the child, expressed in pixels.

112

Composite and Constraint Widgets

max_return Returns the maximum height of the child, expressed in pixels.
This procedure is equivalent to getting the mi n and nmax resources for this child child.

To enable or disable automatic recalculation of pane sizes and positions, use
XawPanedSet Ref i gur eMbde :

voi d XawPanedSet Ref i gureMbde(w, node);

w Specifies the Paned widget.
mode Specifies whether the layout of the Paned widget isenabled (Tr ue) or disabled
(Fal se).

When making several changes to the children of a Paned widget after the Paned has been redlized, itisa
good ideato disable relayout until after all changes have been made.

To retrieve the number of panesin apaned widget use XawPanedGet NunfSub:
i nt XawPanedGet NunSub(w) ;
w Specifies the Paned widget.

This function returns the number of panes in the Paned widget. Thisis not the same as the number of
children, since the grips are also children of the Paned widget.

Porthole Widget

Application Header file <X11/ Xaw Port hol e. h>
Cl ass Header file <X11/ Xaw Port hol eP. h>
Class porthol eWdget d ass

Class Nane Porthol e

Super cl ass Conposite

The Porthole widget provides geometry management of alist of arbitrary widgets, only one of which may
be managed at any particular time. The managed child widget is reparented within the porthole and is
moved around by the application (typically under the control of a Panner widget).

Resources

When creating a Porthole widget instance, the following resources are retrieved from the argument list or
from the resource database:

113

Composite and Constraint Widgets

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgrounqj
backgroundPixmap Pixmap Pixmap X tUnspecifi edPixmaﬂ)
borderColor BorderColor Pixel X tDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension A seeLayout
Semanti cs
mappedWhenM anagéflappedwWhenManaged Boolean True
numChildren ReadOnly Cardinal R 0
reportCallback ReportCallback Callback NULL
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
translations Tranglations TrandationTable NULL
width Width Dimension A seeLayout
Semanti cs
X Position Position 0
y Position Position 0
report Cal | back A list of functions to invoke whenever the managed child widget

changes size or position.

Layout Semantics

The Porthole widget allows its managed child to request any sizethat isaslarge or larger than the Porthole
itself and any location so long as the child till obscures all of the Porthole. This widget typically is used
with a Panner widget.

Porthole Callbacks

Thefunctionsregistered onther epor t Cal | back list areinvoked whenever the managed child changes
size or position:

voi d ReportProc(porthole, <client _data, report);
porthole Specifies the Porthole widget.

client_data Specifies the client data.

114

Composite and Constraint Widgets

report Specifies a pointer to an XawPanner Report structure containing the location and

size of the dlider and the size of the canvas.

Tree Widget

Application Header file <X11/ Xaw Tree. h>
Cl ass Header file <X11/ Xaw Tr eeP. h>
Class treeWdgetd ass

Cl ass Nanme Tree

Super cl ass Constrai nt

The Tree widget provides geometry management of arbitrary widgetsarranged in adirected, acyclic graph
(i.e., atree). The hierarchy is constructed by attaching a constraint resource calledt r eePar ent to each
widget indicating which other node in the tree should be treated as the widget's superior. The structure
of the tree is shown by laying out the nodes in the standard format for tree diagrams with lines drawn
connecting each node with its children.

The Tree sizesitsalf according to the needs of its children and is not intended to be resized by its parent.
Instead, it should be placed inside another composite widget (such asthe Por t hol e or Vi ewpor t) that
can be used to scroll around in the tree.

Resources
When creating a Tree widget instance, the following resources are retrieved from the argument list or from
the resource database:
Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
autoReconfigure | AutoReconfigure Boolean False
background Background Pixel (tDefauItBackgroun(F
backgroundPixmap Pixmap Pixmap (tUnspecifiedPixmaﬂ)
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel X tDefaultForeground
gravity Gravity XtGravity WestGravity
height Height Dimension A see the section
called “Layout
Semantics’
hSpace HSpace Dimension 4
lineWidth LineWidth Dimension 0

115

Composite and Constraint Widgets

Name Class Type Notes Default Value
mappedWhenM anagéflappedWhenM anage Boolean True
numChildren ReadOnly Cardinal R 0
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
vSpace V Space Dimension 4
trandations Tranglations TrandationTable NULL
width Width Dimension A see the section
called “Layout
Semantics”
X Position Position 0
y Position Position 0

aut oReconfi gure

Whether or not to layout the tree every time anode is added or removed.

gravity

hSpace

vSpace

| i neWdth

Specifies the side of the widget from which the tree should grow. Valid
values include West Gravity, NorthGravity, EastGavity, and
Sout hGravity.

The amount of space, in pixels, to leave between the children. This resource
specifies the amount of space left between the outermost children and the edge
of the box.

Thewidth of the lines from nodes that do not have at r ee GC constraint resource
to their children.

Constraint Resources

Each child of the Tree widget must specify its superior node in the tree. In addition, it may specify a GC
to use when drawing aline between it and its inferior nodes.

Name Class Type Notes Default Value
treeGC TreeGC GC NULL
treeParent TreeParent Widget NULL
treeGC This specifies the GC to use when drawing lines between this widget and its inferiors

treePar ent

Layout Seman

in the tree. If thisresource is not specified, the Tree'sf or egr ound and | i neW dt h
will be used.

This specifies the superior node in the tree for this widget. The default is for the node to
have no superior (and to therefore be at the top of the tree).

tics

Each time a child is managed or unmanaged, the Tree widget will attempt to reposition the remaining
children to fix the shape of the tree if the resource is set. Children at the top (most superior) of the tree
are drawn at the side specified by the resource.

116

Composite and Constraint Widgets

After positioning all children, the Tree widget attempts to shrink its own size to the minimum dimensions
required for the layout.

Convenience Routines

The most efficient way to layout a tree is to set aut oReconfi gure to False and then use the
XawTr eeFor ceLayout routineto arrange the children.

voi d XawTr eeFor ceLayout (w) ;

w Specifies the Tree widget.

Viewport Widget

Application Header file <X11/ Xaw Vi ewport. h>

Cl ass Header file <X11/ Xaw Vi ewport P. h>

Class viewportWdget d ass

Cl ass Nane Vi ewport

Supercl ass Form

The Viewport widget consists of aframewindow, one or two Scrollbars, and an inner window. The size of
the frame window is determined by the viewing size of the data that is to be displayed and the dimensions
to which the Viewport is created. The inner window is the full size of the data that is to be displayed
and is clipped by the frame window. The Viewport widget controls the scrolling of the data directly. No
application callbacks are required for scrolling.

When the geometry of the frame window is equal in size to the inner window, or when the data does not

require scrolling, the Viewport widget automatically removes any scrollbars. The f or ceBar s option
causes the Viewport widget to display all scrollbars permanently.

Resources

When creating a Viewport widget instance, the following resources are retrieved from the argument list
or the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
allowHoriz Boolean Boolean False
dlowVert Boolean Boolean False

117

Composite and Constraint Widgets

3

Name Class Type Notes Default Value
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel (tDefauItBackgroun(F
backgroundPixmap Pixmap Pixmap X tUnspecifiedPi xmaﬂ)
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap X tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
forceBars Boolean Boolean False
height Height Dimension height of the child
nappedwWhenM anagiflappedwWhenManaged Boolean True
numChildren ReadOnly Cardinal R 0
reportCallback ReportCallback XtCallbackList NULL
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
translations Tranglations TrandationTable NULL
useBottom Boolean Boolean False
useRight Boolean Boolean False
width Width Dimension width of the child
X Position Position 0
y Position Position 0
al owHori z
al | owvert If these resources are Fal se then the Viewport will never create a

scrollbar in thisdirection. If itis Tr ue then the scrollbar will only
appear when it is needed, unlessf or ceBar s isTr ue.

forceBars When Tr ue the scrollbars that have been allowed will aways be
visible on the screen. If Fal se the scrollbars will be visible only
when the inner window is larger than the frame.

report Cal | back These callbacks will be executed whenever the Viewport adjusts
the viewed area of the child. Thecall_data parameter isapointer to
an XawPannerReport structure.

useBottom

useRi ght By default the scrollbars appear on the left and top of the screen.
Theseresourcesallow thevertical scrollbar to be placed ontheright
edge of the Viewport, and the horizontal scrollbar on the bottom
edge of the Viewport.

118

Composite and Constraint Widgets

Layout Semantics

The Viewport widget manages a single child widget. When the size of the child islarger than the size of
the Viewport, the user can interactively movethe child within the Viewport by repositioning the scrollbars.

The default size of the Viewport before it is realized is the width and/or height of the child. After
it is redlized, the Viewport will alow its child to grow vertically or horizontaly if al | owMert or
al | owHor i z are set, respectively. If the corresponding vertical or horizontal scrollbar is not enabled,
the Viewport will propagate the geometry request to its own parent and the child will be allowed to change
size only if the Viewport's parent allows it. Regardless of whether or not scrollbars are enabled in the
corresponding direction, if the child requests a new size smaller than the Viewport size, the change will
be allowed only if the parent of the Viewport alows the Viewport to shrink to the appropriate dimension.

The scrollbar children of the Viewport are named hor i zont al andverti cal . By using these names
the programmer can specify resources for the individual scrollbars. Xt Set Val ues can be used to
modify the resources dynamically once the widget ID has been obtained with Xt NameToW dget .

Note

Although the Viewport is a Subclass of the Form, no resources for the Form may be supplied for
any of the children of the Viewport. These constraints are managed internally and are not meant
for public consumption.

119

Chapter 7. Creating New Widgets
(Subclassing)

Although the task of creating a new widget may at first appear alittle daunting, there is a basic simple
pattern that all widgets follow. The Athena Widget library contains a special widget called the Template
widget that isintended to assist the novice widget programmer in writing a custom widget.

Reasons for wishing to write a custom widget include:
 Providing agraphical interface not currently supported by any existing widget set.

» Convenient access to resource management procedures to obtain fonts, colors, etc., even if user
customization is not desired.

» Convenient access to user input dispatch and translation management procedures.
» Accessto callback mechanism for building higher-level application libraries.
» Customizing the interface or behavior of an existing widget to suit a special application need.

» Desire to allow user customization of resources such as fonts, colors, etc., or to allow convenient re-
binding of keys and buttons to internal functions.

» Converting a non-Toolkit application to use the Toolkit.

In each of these cases, the operation needed to create a new widget isto "subclass' an existing one. If the
desired semantics of the new widget are similar to an existing one, then the implementation of the existing
widget should be examined to see how much work would be required to create a subclass that will then be
able to share the existing class methods. Much time will be saved in writing the new widget if an existing
widget class Expose, Resize and/or GeometryManager method can be used by the subclass.

Note that some trivia uses of a“bare-bones’ widget may be achieved by simply creating an instance of
the Core widget. The class variable to use when creating a Core widget iswi dget Cl ass. The geometry
of the Core widget is determined entirely by the parent widget.

It is very often the case than an application will have a special need for a certain set of functions and that
many copies of these functions will be needed. For example, when converting an older application to use
the Toolkit, it may be desirable to have a"Window Widget" classthat might have the following semantics:

 Allocate 2 drawing colorsin addition to a background color.
 Allocate atext font.

» Execute an application-supplied function to handle exposure events.
» Execute an application-supplied function to handle user input events.

It is obvious that a completely genera-purpose WindowWidgetClass could be constructed that would
export all class methods as callbackslists, but such awidget would be very large and would have to choose
some arbitrary number of resources such as colorsto allocate. An application that used many instances of
the general-purpose widget would therefore un-necessarily waste many resources.

In this section, an outline will be given of the procedure to follow to construct a special-purpose widget to
addresstheitemslisted above. Thereader should refer to the appropriate sections of the X Toolkit Intrinsics

120

Creating New Widgets (Subclassing)

- C Language Interface for complete details of the material outlined here. Section 1.4 of the Intrinsics
should be read in conjunction with this section.

All Athena widgets have three separate files associated with them:

» A "public" header file containing declarations needed by applications programmers

» A "private" header file containing additional declarations needed by the widget and any subclasses
A source code file containing the implementation of the widget

This separation of functionsinto threefilesis suggested for all widgets, but nothing in the Toolkit actually
requiresthisformat. In particular, a private widget created for a single application may easily combine the
"public" and "private" header filesinto asinglefile, or merge the contents into another application header
file. Similarly, the widget implementation can be merged into other application code.

In the following example, the public header file <X11/ Xaw/ Tenpl at e. h>, the private header file
<X11/ Xaw/ Tenpl at eP. h> andthe sourcecodefile<X11/ Xaw/ Tenpl at e. ¢> will bemodifiedto
produce the "WindowWidget" described above. In each case, the files have been designed so that aglobal
string replacement of "Template" and "template” with the name of your new widget, using the appropriate
case, can be done.

Public Header File

The public header file contains declarations that will be required by any application module that needs to
refer to the widget; whether to create an instance of the class, to perfforman Xt Set Val ues operation,
or to call apublic routineimplemented by the widget class.

The contents of the Template public header file, <X11/ Xaw/ Tenpl at e. h>, are:

/* Copyright (c) X Consortium 1987, 1988 */

#i fndef _Tenplate_h
#define _Tenplate_h

/**
*
* Tenpl ate wi dget
*

**/

/| * Resources:

Nane d ass RepType Def aul t Val ue
backgr ound Backgr ound Pi xel Xt Def aul t Backgr ound
bor der Bor der Col or Pi xel Xt Def aul t For egr ound
bor der Wdt h Bor der W dt h Di nensi on 1

dest royCal | back Cal | back Poi nt er NULL

hei ght Hei ght Di mensi on 0

121

Creating New Widgets (Subclassing)

mappedWienManaged MappedWhenManaged Bool ean True
sensitive Sensitive Bool ean True
wi dt h W dt h Di nensi on 0
X Posi tion Posi tion 0
y Posi tion Posi tion 0

*/

/* define any special resource nanes here that are not in <X11/StringDefs.h> */
#def i ne Xt Nt enpl at eResour ce "t enpl at eResour ce”

#def i ne Xt CTenpl at eResour ce " Tenpl at eResour ce"

/* declare specific Tenpl ateW dget cl ass and instance datatypes */

typedef struct _Tenpl ated assRec* Tenpl at eW dget C ass;
typedef struct _Tenpl at eRec* Tenpl at eW dget ;

/* declare the class constant */

extern Wdget C ass tenpl at eW dget C ass;

#endif /* _Tenplate_h */

Y ou will notice that most of thisfile is documentation. The crucia parts are the last 8 lines where macros
for any private resource names and classes are defined and where the widget class datatypes and class

record pointer are declared.

For the "WindowWidget", we want 2 drawing colors, a calback list for user input and an
exposeCal | back callback list, and we will declare three convenience procedures, so we need to add

/| * Resources:

cal | back Cal | back Cal | back NULL

draw ngCol or1l Col or Pi xel Xt Def aul t For egr ound
drawi ngCol or2 Col or Pi xel Xt Def aul t For egr ound
exposeCal | back Cal | back Cal | back NULL

f ont Font XFont St ruct * Xt Def aul t Font

-

#def i ne Xt Ndrawi ngCol or1 "dr aw ngCol or 1"
#def i ne Xt Ndrawi ngCol or 2 "dr awi ngCol or 2"
#def i ne Xt NexposeCal | back "exposeCal | back"

extern Pixel WndowCol orl(/* Wdget */);
extern Pixel WndowCol or2(/* Wdget */);
extern Font W ndowFont(/* Wdget */);

122

Creating New Widgets (Subclassing)

Note that we have chosen to call the input callback list by the generic name, cal | back, rather than a
specific name. If widgets that define a single user-input action al choose the same resource name then
there is greater possibility for an application to switch between widgets of different types.

Private Header File

The private header file contains the complete declaration of the class and instance structures for the widget
and any additional private datathat will be required by anticipated subclasses of the widget. Informationin
the private header fileis normally hidden from the application and is designed to be accessed only through
other public procedures; e.g. Xt Set Val ues.

The contents of the Template private header file, <X11/ Xaw/ Tenpl at eP. h>, are:

/* Copyright (c) X Consortium 1987, 1988
*/

#i fndef _Tenpl ateP_h
#define _Tenpl ateP_h

#i ncl ude <X11/ Xaw/ Tenpl at e. h>
/* include superclass private header file */
#i ncl ude <X11/ Cor eP. h>

/* define unique representation types not found in <X11/StringDefs. h> */
#def i ne Xt RTenpl at eResour ce "Tenpl at eResour ce”

typedef struct {

int enpty;
} Tenpl ated assPart ;

typedef struct _Tenpl ated assRec {
CoreC assPart core_cl ass;
Templ at e assPart tenpl ate_cl ass;
} Tenpl at ed assRec;

extern Tenpl at eCl assRec tenpl at ed assRec;

typedef struct {
/* resources */
char* resource;
/* private state */
} Templ atePart;

typedef struct _Tenpl ateRec {
CorePart core,

Tenpl atePart tenpl at e;

} Tenpl at eRec;

#endif /* _TenplateP_h */

123

Creating New Widgets (Subclassing)

The private header fileincludesthe private header file of its superclass, thereby exposing the entireinternal
structure of the widget. It may not always be advantageousto do this; your own project development style
will dictate the appropriate level of detail to expose in each module.

The "WindowWidget" needs to declare two fields in its instance structure to hold the drawing colors, a
resource field for the font and afield for the expose and user input callback lists:

typedef struct {
/* resources */
Pi xel color_1;
Pi xel col or_2;
XFont Struct* font;
Xt Cal | backLi st expose_cal | back;
Xt Cal | backLi st i nput _cal | back;
/* private state */
/* (none) */
} WndowPart;

Widget Source File

The source code file implements the widget class itself. The unique part of thisfile is the declaration and
initialization of the widget class record structure and the declaration of all resources and action routines
added by the widget class.

The contents of the Template implementation file, <X11/ Xaw Tenpl at e. ¢c>, are:

/* Copyright (c) X Consortium 1987, 1988
*/

#i ncl ude <X11/IntrinsicP. h>
#i ncl ude <X11/ Stri ngDefs. h>
#i ncl ude "Tenpl at eP. h"

static XtResource resources[] = {
#define offset(field) XtOfsetO(Tenpl ateRec, tenplate.field)
/* {name, class, type, size, offset, default_type, default_addr}, */
{ Xt Nt enmpl at eResour ce, Xt CTenpl at eResource, Xt RTenpl at eResour ce,
si zeof (char*), offset(resource), XtRString, (XtPointer) "default" },
#undef of f set

b
static void Tenpl ateAction(/* Wdget, XEvent*, String*, Cardinal* */);

static XtActionsRec actions[] =

{
/* {name, procedure}, */
{"templ ate", Tenpl at eActi on},

b

static char translations[] =

124

Creating New Widgets (Subclassing)

<Key>: tenplate() \\n\\

Tenpl at el assRec tenpl ateC assRec = {

{
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/

[)

b

/* core fields */

superclass */ (WdgetC ass) &w dget O assRec,
class_name */ "Tenpl ate",

wi dget _size */ sizeof (Tenpl ateRec),
class_initialize */ NULL,
class_part_initialize */ NULL,
class_inited */ FALSE,

initialize */ NULL,

initialize_hook */ NULL,

realize */ XtlnheritRealize,

actions */ actions,

num actions */ XtNunber(actions),
resources */ resources,

num resources */ Xt Nunber(resources),
xrmclass */ NULLQUARK,

conpress_notion */ TRUE,
conpress_exposure */ TRUE,
conpress_enter| eave */ TRUE,

visible_ interest */ FALSE,

destroy */ NULL,

resize */ NULL,

expose */ NULL,

set _values */ NULL,

set _val ues_hook */ NULL,

set _val ues_al nost */ Xtlnherit Set Val uesAl nost,
get _val ues_hook */ NULL,

accept _focus */ NULL,

version */ XtVersion,

cal | back_private */ NULL,

tmtable */ translations,

qguery_geonetry */ XtlnheritQueryGeonetry,
di spl ay_accel erator */ XtlnheritDi spl ayAccel erat or,
extension */ NULL

/* tenplate fields */
empty */ 0

W dget Cl ass tenpl at eW dget G ass = (W dget C ass) & enpl at edl assRec;

Theresource list for the "WindowWidget" might look like the following:

static XtResource resources[] = {
#define offset(field) XtOfset O (WndowWN dget Rec, wi ndow. fi el d)

/*

{nane, class, type, size, offset, default_type, default_addr}, */

{ Xt Ndrawi ngCol or1, XtCColor, XtRPixel, sizeof(Pixel),

of fset(color_1), XtRString, XtDefaultForeground },

{ Xt Ndrawi ngCol or2, XtCColor, XtRPixel, sizeof(Pixel),

125

Creating New Widgets (Subclassing)

of fset(color_2), XtRString, XtDefaultForeground },

{ XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),
of fset(font), XtRString, XtDefaultFont },

{ Xt NexposeCal | back, XtCCall back, XtRCall back, sizeof (XtCall backList),
of f set (expose_cal | back), XtRCall back, NULL },

{ XtNcal | back, XtCCall back, XtRCallback, sizeof(XtCallbackList),
of fset (i nput _cal | back), XtRCall back, NULL },

#undef of f set

b

The user input callback will be implemented by an action procedure which passes the event pointer as
call_data. The action procedure is declared as:

/* ARGSUSED */

static void InputAction(w, event, paranms, hum parans)
W dget w;

XEvent *event;

String *paranms; /* unused */

Cardi nal *num paramns; /* unused */

{
Xt Cal | Cal | backs(w, XtNcal |l back, (XtPointer)event);
}
static XtActionsRec actions[] =
{
/* {name, procedure}, */
{"input", InputAction},
1

and the default input binding will be to execute the input callbackson KeyPr ess and But t onPr ess

static char translations[] =
" <Key>: input() \\n\\
<Bt nDown>: input () \\

In the class record declaration and initialization, the only field that is different from the Template is the
expose procedure:

/* ARGSUSED */
static void Redisplay(w, event, region)
W dget w;
XEvent *event; /* unused */
Regi on region;
{
Xt Cal | Cal | backs(w, XtNexposeCallback, (XtPointer)region);

}

W ndowCl assRec wi ndowCl assRec = {

126

Creating New Widgets (Subclassing)

/* expose */ Redi spl ay,

The "WindowWidget" will also declare three public procedures to return the drawing colors and the font
id, saving the application the effort of constructing an argument list for acall to Xt Get Val ues :

Pi xel W ndowCol or 1(w)

W dget w;
{

return ((W ndoww dget)w) - >wi ndow. col or _1;
}
Pi xel W ndowCol or 2(w)

W dget w;
{

return ((W ndoww dget)w) - >wi ndow. col or _2;
}
Font W ndowFont (w)

W dget w;
{

return ((W ndoww dget)w) - >w ndow. f ont - >fi d;
}

The "WindowWidget" is now complete. The application can retrieve the two drawing colors from the
widget instance by calling either Xt Get Val ues, or the W ndowCol or functions. The actual window
created for the "WindowWidget" is available by calling the Xt W ndow function.

127

Chapter 8. Acknowledgments

Many thanks go to Ralph Swick (Project Athena/ Digital) who has contributed much time and effort to
this widget set. Previous versions of the widget set are largely due to his time and effort. Many of the
improvements that | have been able to make are because he provided a solid foundation to build upon.
While much of the effort has been Ralph's, many other people have contributed to the code.

Mark Ackerman (fornerly Project Athena)
Donna Converse (M T X Consortiun)
JimFulton (formerly MT X Consortium
Loretta Guarino-Reid (Digital WSL)
Charl es Haynes (Digital WSL)

Rich Hyde (Digital W5L)

Mary Larson (Digital UEQ

Joel McCornack (Digital WSL)

Ron Newman (fornerly Project Athena)
Jeanne Rich (Digital W5L)

Terry Weissman (formerly Digital WSL)

While not much remains of the X10 toolkit, many of the ideas for this widget set come from that original
version. The design and implementation of the X 10 toolkit were done by:

M ke Gancarz (formerly Digital UEQ
Charl es Haynes (Digital WSL)

Phil Karlton (formerly Digital WSL)
Kat hl een Langone (Digital UEG

Mary Larson (Digital UEG

Ram Rao (Digital UEQ

Snmokey Wal |l ace (formerly Digital WSL)
Terry Weissman (fornerly Digital WSL)

| have used the formatting ideas, and some of the words from previous versions of this document. The
X11R3 Athenawidget document was written by:

Ral ph R Swick (Project Athena/ Digital)
Terry Weissman (fornerly Digital WSL)
Al Mento (Digital UEGQ

Putting this manual together was a major task in and of itself. | would like to thank Ralph Swick, Donna
Converse, and Jim Fulton for taking the time to help convert my technical knowledge into legible text. A
special thanks to Jean Diaz (O'Reilly and Associates) for spending nearly a month with me working out
all the annoying little details.

Chris D. Peterson
M T X Consortium 1989

The R5 edition of this document has been edited by the research staff of the MIT X Consortium, with
significant contributions by Jim Fulton (NCD).

128

Acknowledgments

Donna Conver se
MT X Consortium 1991

The R6 edition of this document has been edited to reflect changes brought about by research staff of the
Omron Corporation, with special recognition to Li Y uhong, Seiji Kuwari, and Hiroshi Kuribayashi for the
X11R5/contrib/lib/Xaw internationalization that inspired this version.

Frank Sheeran
Omron Corporation 1994

This document is made available to you in modern formats such asHTML and PDF thanksto the efforts of
Matt Dew, who converted the original troff sources to DocBook/XML and edited them into shape; along
with Gaetan Nadon and Alan Coopersmith, who set up the formatting machinery in the libXaw builds and
performed further editing of the DocBook markup.

129

callbacks, 12
I n d eX chapter format, 4
child, 2
class, 2, 4
Symbols class header file, 4
usr/include/X 11/bitmaps, 10 class name, 4
Jusr/share/X 11/app-defaults, 15 client, 2
_in_out, 3 Command widget, 19
_return, 3 actions, 21
class name, 19
A resources, 20
A, note, 5 translation bindings, 21
app-defaults, 15 Command.h, 19
application defaults, 15 CommandP.h, 19
application header file, 4 commandWidgetClass, 19
application programmer, 2 compiling applications, 14
Arg, 16 conventions
ArgLigt, 16 chapter format, 4
argument lists, 16 used in manual, 3
AsciiSink object, 80, 84, 85 conversions, 9
class name, 84 BackingStore, 53
resources, 84, 91 Bitmap, 10
AsciiSink.h, 84 ColorCursor, 9
ascii SinkObjectClass, 84 Cl{fSOF, 9
AsciiSinkP.h, 84 Orientation, 98, 109
AsciiSrc object, 80, 81, 85 Pixel, 9
class name, 82 creating widgets, 7
resources, 83 cursor, 9
AsciiSrc.h, 82
ascii SrcObjectClass, 82 D
AsciiSrcP.h, 82 D, note, 5
AsciiText widget, 79, 86 destroyCallback, 13
class name, 80 Dialog widget, 98
resources, 80 automatically created children, 102
AsciiText.h, 79 class name, 99
AsciiTextP.h, 79 constraint resources, 100
resources, 99
B special considerations, 102
bitmap conversions, 10 Dialog.h, 99
bitmapFilePath, 10 DialogP.h, 99
BitmapFilePath, 10 dialogWidgetClass, 99
Box widget, 96
class name, 97 E
layout semantics, 98 events, 10
resources, 97 examples, 18
Box.h, 97
BoxP.h, 97 F

boxWidgetClass, 97 fallback resources, 6

FindPosition, 94

C float resources
C, note, 5 setting, 42
CallbackProc, 12 Form widget, 103

130

Index

class name, 103
constraint resources, 104
re-layout, 106
resources, 104
Form.h, 103
FormP.h, 103
formWidgetClass, 103
fromLeft, 102
FullName, 2

G
Grip widget, 22
actions, 23
class name, 22
GripAction routine, 23
GripAction table, 24
resources, 22
Grip.h, 22
GripAction, 111, 112
GripCallData, 24
GripP.h, 22
gripWidgetClass, 22

I

initialization, 6

input, 5

input focus, 5

Input Method, 73
instance, 2
internationalization, 6
Intrinsic.h, 13
introduction, 1

J
jumpProc, 41

L

Label widget, 24
class name, 24
resources, 25

Label.h, 24

LabelP.h, 24

label WidgetClass, 24

libICE, 14

libSM, 14

libX11, 14

libXaw, 14

libXext, 14

libXmu, 14

libXt, 14

linking applications, 14

List widget, 26
actions, 28

callbacks, 29
class name, 26
default trandlation table, 29
resources, 26
List.h, 26
ListP.h, 26
listWidgetClass, 26
locale, 6

M

MenuButton widget, 60
actions, 62
class name, 60
resources, 61
MenuButton.h, 60
MenuButtonP.h, 60
menuButtonWidgetClass, 60
Menus
popup, 51
pulldown, 51
using, 51
method, 2
MultiSink object, 80, 85
MultiSrc object, 80, 85

N

name
widget, 2
notes, 5

O
object, 2

P

Paned widget, 106
change height settings, 112
class name, 107
constraint resources, 109
disable auto-reconfiguring, 113
disable paneresizing, 112
enable auto-reconfiguring, 113
enable paneresizing, 112
get height settings, 112
getting the number of children, 113
layout semantics, 110
resources, 107
using, 107

Paned.h, 106

PanedP.h, 106

panedWidgetClass, 106

Panner widget, 31
actions, 33
callbacks, 34

131

Index

class name, 31 simpleMenuWidgetClass, 52
default trandation table, 34 SimpleP.h, 42
resources, 31 simpleWidgetClass, 42
Panner.h, 31 Sme object, 59
PannerP.h, 31 class name, 59
pannerWidgetClass, 31 Highlight method, 60
parent, 2 Notify method, 60
pixel, 9 subclassing, 59
Porthole widget, 113 Unhighlight method, 60
callbacks, 114 Sme.h, 59
classname, 113 SmeBSB abject, 56
layout semantics, 114 class name, 56
resources, 113 resources, 56
Porthole.h, 113 SmeBSB.h, 56
PortholeP.h, 113 smeBSBObjectClass, 56
portholeWidgetClass, 113 SmeBSBP.h, 56
Smel.ine object, 58
R class name, 58
resources, 58, 59
E;S.Ote’ > SmeLineh, 58
io groups . .
zero or one of many, 49 smeL|.neObJ ectClass, 58
. X SmeLineP.h, 58
realizing widgets, 10 biectClass. 59
Repeater widget, 34 gnnﬁ rj]egtg &5,
actions, 37 L .
class name, 35 stn_ng conversions, 9
resources, 35 Str! ngDefs.h, 13
trandation bindings, 37 Str! pCharP.h_, 43
Repeater.h, 34 StripChart widget, 43
RepeaterP.h, 35 class name, 44

getting the value, 45

repeaterWidgetClass, 35 getValue callback, 45

ReportProc, 34, 114

resources, 44
:;c.)tuxrtc% 2,814 StripChart.h, 43
' stripChartWidgetClass, 44
superclass, 2, 4
S p
Scrollbar widget T
callbacks, 41 .
default trandglation table, 40 . vy|dget, 65
actions, 68, 68

setting thumb values, 41
ScrollProc, 41
Simple widget, 42
class name, 42
resources, 43
Simple.h, 42
SimpleMenP.h, 52
SimpleMenu widget, 51
actions, 54
class name, 52
default trandations, 54
MenuPopdown routine, 54, 55
positioning, 55
resources, 52
SimpleMenu.h, 51

customizing, 85

default key bindings, 64

default trandations, 74

fileinsertion, 67

query replace, 65

search, 65

Text Selections for Application Programmers, 73

Text Selections for Users, 67

User's Guide to the Text widget, 64
TextSink object, 85, 90

class name, 91

ClearToBackground, 92

DisplayText, 92

FindDistance, 94

132

Index

FindPosition, 93
GetCursorBounds, 95

XawPanedSetMinMax, 112
XawPanedSetRefigureMode, 113

MaxHeight, 94 XawPositionError, 77, 89

MaxLines, 94 XawPositionSimpleMenu, 55, 55

Resolve, 93 XawScrollbarSetThumb, 41

SetTabs, 95 XawsdL eft, 89, 89

subclassing, 91 XawsdRight, 89, 89
TextSink.h, 91 XawSimpleMenuAddGlobal Actions, 55
textSinkObjectClass, 91 XawSimpleMenuClearActiveEntry, 56
TextSinkP.h, 91 XawSimpleMenuGetActiveEntry, 56

TextSrc object, 85
Read, 88

toolkit initialization, 6

type conversions, 9

U

underlying model, 3
user, 2

V
Viewport widget, 117
class name, 117
layout semantics, 119
resources, 117
Viewport.h, 117
ViewportP.h, 117
viewportWidgetClass, 117

w

widget, 3

widget class, 3

widget creation, 7
widget programmer, 3
writing applications, 13

X

XawAsciiSave, 84

XawA scii SourceFreeString, 102
XawDialogAddButton, 102
XawDialogGetValueString, 102
XawEditDone, 77
XawEditError, 77, 89
XawFormDoL ayout, 106
XawGripCallData, 24, 24
XawGripCallDataRec, 24, 24
XawListChange, 29
XawListHighlight, 30
XawListReturnStruct, 29, 29
XawListShowCurrent, 30
XawListUnhighlight, 30
XawPanedAllowResize, 112
XawPanedGetMinMax, 112
XawPanedGetNumSub, 113

XawTextBlock, 75
XawTextBlockPtr, 75
XawTextDisableRedisplay, 78
XawTextDisplay, 78
XawTextDisplayCaret, 79
XawTextEnableRedisplay, 78
XawTextGetlnsertionPoint, 79
XawTextGetSel ectionPos, 76
XawTextGetSource, 79
XawTextInvalidate, 77
XawTextPosition, 75
XawTextReplace, 76
XawTextSearch, 77
XawTextSetlnsertionPoint, 78
XawTextSetSelection, 76
XawTextSetSelectionArray, 73, 78
XawTextSetSource, 79
XawTextTopPosition, 78
XawTextUnsetSelection, 76
XawWMProtocols, 72
XAW_LIST_NONE, 30

xrdb, 15

XtAddCallback, 13, 13, 14
XtAddCallbacks, 13
XtApplnitialize, 10
XtAppMainLoop, 10, 14
XtCallbackList, 13
XtCallbackProc, 13
XtCallbackRec, 13

XtCreateM anagedWidget, 7, 14
XtCreateWidget, 11, 13
XtDefaultBackground, 8, 9
XtDefaultForeground, 8, 9, 9
XtDestroyWidget, 11

XtError, 8
XtGetApplicationResources, 16
XtGetVdues, 12, 12
XtlnheritClearToBackground, 92
XtManageChildren, 11
XtMapWidget, 11, 11
XtMoveWidget, 96

XtN, 14

XtNameToWidget, 102, 119
XtNinput, 5

133

Index

XtNumber, 17, 17, 18, 18
XtOpenApplication, 6, 14
XtorientHorizontal, 98, 98, 109
XtorientVertical, 98, 98, 109
XtRealizeWidget, 7, 10, 11, 14
XtResizeWidget, 96

XtSetArg, 17

XtSetL anguageProc, 6

XtSetM appedWhenManaged, 11
XtSetValues, 12, 12, 96

134

	Athena Widget Set - C Language Interface
	Table of Contents
	Chapter 1. Athena Widgets and The Intrinsics
	Introduction to the X Toolkit
	Terminology
	Underlying Model
	Conventions Used in this Manual
	Format of the Widget Reference Chapters
	Input Focus

	Chapter 2. Using Widgets
	Using Widgets
	Setting the Locale
	Initializing the Toolkit
	Creating a Widget
	Common Resources
	Resource Conversions
	Cursor Conversion
	Pixel Conversion
	Bitmap Conversion

	Realizing a Widget
	Processing Events
	Standard Widget Manipulation Functions
	Mapping Widgets
	Destroying Widgets
	Retrieving Widget Resource Values
	Modifying Widget Resource Values

	Using the Client Callback Interface
	Programming Considerations
	Writing Applications
	Changing Resource Values
	Specifying Resources
	Creating Argument Lists

	Example Programs

	Chapter 3. Simple Widgets
	Command Widget
	Resources
	Command Actions

	Grip Widget
	Resources
	Grip Actions

	Label Widget
	Resources

	List Widget
	Resources
	List Actions
	List Callbacks
	Changing the List
	Highlighting an Item
	Unhighlighting an Item
	Retrieving the Currently Selected Item
	Restrictions

	Panner Widget
	Resources
	Panner Actions
	Panner Callbacks

	Repeater Widget
	Resources
	Repeater Actions

	Scrollbar Widget
	Resources
	Scrollbar Actions
	Scrollbar Callbacks
	Convenience Routines
	Setting Float Resources

	Simple Widget
	Resources

	StripChart Widget
	Resources
	Getting the StripChart Value

	Toggle Widget
	Resources
	Toggle Actions
	Toggle Actions
	Radio Groups
	Convenience Routines
	Changing the Toggle's Radio Group.

	Chapter 4. Menus
	Using the Menus
	SimpleMenu Widget
	Resources
	SimpleMenu Actions
	Positioning the SimpleMenu
	Convenience Routines
	Registering the Global Action Routines
	Getting and Clearing the Current Menu Entry

	SmeBSB Object
	Resources

	SmeLine Object
	Resources

	Sme Object
	Resources
	Subclassing the Sme Object

	MenuButton Widget
	Resources
	MenuButton Actions
	MenuButton Actions

	Chapter 5. Text Widgets
	Text Widget for Users
	Default Key Bindings
	Search and Replace
	File Insertion
	Text Selections for Users

	Text Widget Actions
	Cursor Movement Actions
	Delete Actions
	Selection Actions
	The New Line Actions
	Kill and Actions
	Miscellaneous Actions
	Text Selections for Application Programmers

	Default Translation Bindings
	Text Functions
	Selecting Text
	Unhighlighting Text
	Getting Current Text Selection
	Replacing Text
	Searching for Text
	Redisplaying Text
	Resources Convenience Routines

	Ascii Text Widget
	Resources

	Ascii Source Object and Multi Source Object
	Resources
	Convenience Routines
	Conserving Memory
	Saving Files
	Seeing if the Source has Changed

	Ascii Sink Object and Multi Sink Object
	Resources

	Customizing the Text Widget
	Text Widget
	Resources

	TextSrc Object
	Resources
	Subclassing the TextSrc
	Reading Text.
	Replacing Text.
	Scanning the TextSrc
	Searching through a TextSrc
	Text Selections

	TextSink Object
	Resources
	Subclassing the TextSink
	Displaying Text
	Displaying the Insert Point
	Clearing Portions of the Text window
	Finding a Text Position Given Pixel Values
	Finding the Distance Between two Text Positions
	Finding the Size of the Drawing area
	Setting the Tab Stops
	Getting the Insert Point's Size and Location

	Chapter 6. Composite and Constraint Widgets
	Box Widget
	Resources
	Layout Semantics

	Dialog Widget
	Resources
	Constraint Resources
	Layout Semantics
	Example
	Special Considerations

	Automatically Created Children.
	Convenience Routines

	Form Widget
	Resources
	Constraint Resources
	Layout Semantics
	Example

	Convenience Routines

	Paned Widget
	Using the Paned Widget
	Resources
	Constraint Resources
	Layout Semantics
	Resizing Panes from a Grip Action
	Resizing Panes after the Paned widget is resized.
	Managing Children and Geometry Management
	Special Considerations

	Grip Translations
	Convenience Routines

	Porthole Widget
	Resources
	Layout Semantics
	Porthole Callbacks

	Tree Widget
	Resources
	Constraint Resources
	Layout Semantics
	Convenience Routines

	Viewport Widget
	Resources
	Layout Semantics

	Chapter 7. Creating New Widgets (Subclassing)
	Public Header File
	Private Header File
	Widget Source File

	Chapter 8. Acknowledgments
	Index

